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FOREWORD

The public provision of urban facilities and services often
takes the form of a few central supply poi-nts serving a large
number of spatially dispersed demand points: for example,
hospitals, schools, libraries, and emergency services such as
fire and police. A fundamental characteristic of such systems
is the spatial separation between suppliers and consumers. No
market signals exist to identify efficient and inefficient geo-
graphical arrangements, thus the location problem is one that
arises in both East and West, in planned and in market economies.

This problem is being studied at IIASA by the Pub1ic Facility
Location Task which started in 1979. The expected results of
this Task are a comprehensive state-of-the-art survey of current
theories and applications, äo established network of international
contacts among scholars and institutions in different countries,
a framework for comparison, unification, and generalization of
existing approaches as r,vell as the formulation of new problems and
approaches in the field of optimal location theory.

This paper sets out a general method for maxi-mizing the like-
Iihood function of spatial choice models in an effort to bring
together the many separate methods for modeling spatial choices
or interactions that have been presented in the past. Also
included is a computer program written for the calj-bration of
Lhese vari-ous models.

A list of related publications appears at the end of this
paper.

Andrei Rogers
Chairman
Human Settlements
and Services Area
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ABSTRACT

In this paperr ärr interactive computer program for estimating
the parameters of spatial choice modets with multiattribute
utilities is presented. The models to be calibrated may be
unconstrained, singly constrained, or doubly constrained random
utility choice or äntropy-maximi ztnq interaction models. Utilities
may be associated with choice alternatives (zones) or with the
choices themselves (trips) . The program maximizes the likelihood
of the choice matrix (trip table) given observed choices (trips)
using a combination of gradient search and Newton-Raphson itera-
tion methods.

The paper contaj-ns a specification of the range of models
that can be calibrated with the program and a description of
its solution algorithm and organizationr äs we1I as an illustra-
tive application and a listing of the source code.
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ESTIMAT ING MULTIATTRIBUTE
SPATIAL CHOICE I\,IODELS

INTRODUCTION

Recent advances in spat,ial theory have led to a unification
of formerly separate approaches to modeling spatial choices or
interactions. It has been shown that spatial choice models built
on stochastic utility maximization (McFaclden 1973) and spatial
interaction models of the entropy-maximizing type (Wilson 1970)

are formally identical (Williams 1977) and have the same param-

eters and results when applied at the same aggregation leve1
(Anas 1981). Moreover, it has been observed that by varying the
exponent parameter of these models, the whole continuum from
indifferent to strict utility maximizing behavior can be repre-
sented, actual human behavior being something in between (Brotchie
et aI. 1980) .

The model doing so many things is Line multinomial Logit
model with its many .rariations. Because of its simplicity,
its attractive mathematical properties, and its multiple
interpretability, it has become the most widespread, almost
universal approach to modeling spatial choices in transporta-
tion or residentj-al and j.ndustrial location analysis.
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This paper deals witn the problem of calibv'ating a spatial
choice model of the multinomial logit or entropy-maximizing type,
i.e., of estimating its parameters such that it reproduces a

given set of observed choices (trips) as closely as possible.
Unfortunately, this is not a trivial problem, because the model

is intrinsically nonlinear, i.e., cannot normally be linearized
by logarithmi-c transformation. This means that there is no

straightforward analytical technique to find t.he best-fit param-

eters, but that a numerical approximation technique has to be

applied.

Earlier work in this field includes, among others, that of
Hyman (1969) , Evans (1971) , Batty and Mackie (1972) , Batty (1976) ,

r/an Est and van Setten (1977, 1978), Putman and Ducca (1978a),
and Openshaw (1979) . Hyman (1969) and Evans (1971 ) proposed
different but equivalent algorithms to estimate one-parameter
production-attraction-constrained trip distribution models based

on Bayesian statistics and on the principle of maximum likeli-
hood, respectively. Batty and Mackie (1972) and Batty (1976)

explored various numerical methods to estimate singly and doubly
constrained models with one, two, or three parameters. Van Est
and van Setten (1977, 1978) i-nvestigated maximum-likelihood and

least-square methods for singly constrained models with multiple
parameters. Putman and Ducca ( 1 97Ba) proposed a maximum-Iikelihood
method for estimating a production-constrained interaction model

where not the interactions themselves but only the destinations
are known. An evaluation of various calibration techniques is
containeo in Openshaw (1979) .

A summary result of this accumulated research is that there
is no single "correct" way of calibrating spatial choice or
interaction models, as the choice of a calibration method heavily
depends on the available data, the purpose of the model, and

the specific preferences of the research. However, maximum-

likelihood estimation seems to be the most widely accepted method.
This is true also for nonspatial random-ut.i1it.y choice models

where maximum-likelihood estimation now is a standard method
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(cf. van Lierop and Nijkamp 1981). Therefore, in the approach
presented in this paper, the maximum-likelihood criterion is
used.

llaximizing the likelihood funetion of a spatial choice or
interaction model is conceptually straightforward, and most of
the references given above contain the necessary equations.
However, all of them are specific, i.€., are restricted to a

certain type of model, to a certain kind of constraint, or to
a lj-mi-ted. number of parameters. In contrast, the method presenteo
in this paper is general. The models to be calibrated may be

unconstrainedr production-constrained, attraction-constrained,
or production-attraction-constrained. Moreover, they may be

single-attribute or multiattribute in the exponent, i.e., in
the utility term, and the utility attributes may be associated
either with the choice alternatives (zones) or lvith the choices
themselves (trips). So the method encompasses most of the
specialized models dealt with in the above references.

In addition, the paper differs from others by explicitly
Iisting and explaining the computer program written for the
calibration. Programs of this kind may exist at many places,
but are not generally available. Many researchers must there-
fore either write their own programs or resort to less efficient
trial"-and-error methods,

The computer program presented in this paper maximizes the
Iikelihood of the choice matrix (trip table) of a multinomial
Iogit model with margi-na1 constraints and multiattribute util--
ities given observed choices (trips) using a combination of
gradient search and Newton-Raphson iteration methods. The

program has been designed for interactive work at a computer
terminal to aIlow for maximum control of the calibration rrccess
by the user.



-4-

1. THE PROBLEM

1.1 Choices and Interactions

Consider a population of decision makers who have to make

choices in a spatial context. Let the decision makers be sub-

divided into grroups or categories, which are assumed to display
similar preferences and./or choice behaviors. Such categories
may be made up of individuals of a certain kind, householos of
a certain type, ot a population living in a certain locatj-on or
zone of a city. In reference to transport modeling usage, the
size of these groups is indicated by O1, i = 1,..-,T, where O

stands for origins.

The decision makers face ehoice alternatiues. Choice alter-
natives, too, may be classified into groups of similar character,
e.g., jobs of a certain kind, houses of a certain type, or
facilities in a certain zone. Again in reference to transport
modeting language, the size of these categories is indicated

)

The choice alternatives are characterized by attributes.
It. frequently requires more than one attribute to charactetLze
an alternative. Some attributes are perceived similarly by

all decision makers, i.e., they vary only over alternative groups

); others are perceived differently by each decision maker group,

i.e., they vary over t and j. In transportation terms, some

attributes are destination-specific (sometimes ca11ed attraction
variables) , some are origin- and deslj-nation-specific, i.e.,
associated with trips. To simplify the notation, both kinds of
attributes are stored in a three-dimensional matrix x where *ijk,
ft = 1,...,K is the vector of K attributes of alternative group
j as seen by decision maker group i. Note that for destination-
specific attributes anu *ijO are equal for all i.

With this notation, a unified spatial choice or interaction
model can be derived either as a random utility-maximizinq choice
model or as an entropy-maximiz:-ng spatial interaction model.

The discussion partly follows Anas (1981).
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1.2 Random Utility Choice Models

The random utility choice model is one possible approach
to take account of the many deviations in human behavior from
what seems to be the rational norm within the framework of
the utility-maximizinq paradigm. This is achieved by subsuming

all unexplained behavior into a random component of the uti-iity
function:

u. +r-l

The random utility model states that decision
i will choose alternative group j over alternative

*u;; r . The probability that this occurs is
L)

I

a

1l
*u, =r-l

( tl

maker group
*

-L)

*where 11. -: is the perceived utility of choice alternative group1l
j for decision maker group i, and u, . and tij are its deter-
ministic and stochastic components, respectively. The random

term e.:-: is thought to represent all taste differences between
r_l

indi-vidual decision makers in decision maker group i as well as

all unobserved di-fferences between alternatives in alternative
group J, plus all measurement and specification errors associated
with the u. ,.1l

Furthermore, it is postulated that the deterministic part
of the utility function, ,ij, can be expressed as a linear func-
tion of the attributes of the alternatives:

ß. x. .. = 3tx.'K rlK ', -l-l
(2):TrIu,I

where the ßk are, at the same time, scaling factors and weights
needed to agEregate the attributes into a cofiImon measure of
utili-ty. The vector notation, with the prJ.me indicating trans-
position, will be used henceforth for brevitlz.

r l-Sir

D.,)

J

,J) (3)

a conditional probability such that for any i

I o.,
1',ti

where

(4)
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In addition, it is assumed that the stochastic terms of the
utility function, eij, are stochastically independent and iden-
tically distributed following an extreme value or Gumbe1 distribu-
tion (cf. Domencich and McFadden 1975) z

' rl (s)= ".nl-",,n[-ffi)'{l
where o2 is the variance of the distribution. rf this
tion holds (which is impossible to test), the binomial
model can be derived (cf. Domencich and McFadden 1975)

assump-

Lo Eit

oecision maker
1,...,J, alter-
in (7 ) and

rn (Pi 1ilpi , gi) = l*t (ui j ,ii , ) (6)

The binomial logit model is in agreement \^iith the ehoice
axiom by Luce (1959) stating that the choice ratio of two

alternatives depends only on their relative utility and is
independent of other alternatives of the choice set. More

specifically, the binomial logit model says that the odds of
alternative j belng preferred over alternative j' are a log-
Iinear function of the difference between the utilities of
the two alternatives.

Prom (4) and (6) the multinomial logit choice model can be

derived:

,= ".n[( *f ',,]

j', "-o[t *t''r,']
(7)

where p+ r; is the conditional probability (for
JIT

group i) that of all alternative groups j', j =

native group j will be selected. fnserting (2)

incorporating the root into the ßO yields:



""p(E'rj.:lpjli = 
lEn-.,.,)
j' 1)

where ß' and x,. are deflned as in (2).

D. In p.
' r-l - l-l

o - ,) -'i j t

(8)

(e)

(101

(i1)

,K (12)

'1 .3 Entropy-maximJ-zing Spati-al Interaction Models

The same model can be derlved from information-theoretic
principles by using the entropy-maximizLng (Wilson 197A) or

information-minimj-zing (Snickars and Weibull 1977 ) approach.

This approach determines the most random prediction of choices
(trips) consistent with macro (i.e., aggregate) constraints on

the choice matrj-x by minimizing the information or negative
entropy H contained in it:

Min -H
D,'aJ

subject to:

=II
ij

D.'rl z0

D. = 1- r-l

i = 1,...,Ii j = 1,...rJ

.oE. ,X. ,.r.l 1JK
k = 1,

rf)1LLij

ttLL
ij

D..X...'al ]-lk

where the t?. are observed choices of decision maker groups i
r-l

for alternati-ve groups ), and xn is the mean of attribute k

over aII observed choices. Constraints (tO1 and (11) state
that the p., are probabilities note that now absolute proba-'r-l
billties summing up to one over the whole cholce matrix are

used. Constraint (12) contains the available macro informa-
Li-on about the choice matrix. The minimization uSeS the La-

qrangian functlon

r\.o\) ) t. x .. I
? ". rl L)Kl
rJ

Ii
ij

I
k

L
H

Y (r i
1l

_r§- LL
ii
L)

^ 1- ^v. , rrr v. .- rl - rl ßo( p. .x_ .. -- 11 rlK

(13)
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Lagrangian multipliers. Setting
of this function to zero gives

= 1r...rK as

derivatives

äp. .- rl
= 1 + In p_, - y - i- 1l ,-

d lr--
ht-i-

dY

ß.x... =Qk ]-lK

exp(ß'x. . )I ': 
-l 

-LJ

and back into ( 1 5 ) gives

,J (14)

(1s)

(16)

the absolute

=II
i3

I I exP(ß'x,r,)
i j' r-

p. - 1 = 0
L)

Rearranging (14) yields

Pij = exP(Y 1)

and substituting into (15)

choice probabillties

exp(B'x..)
- -J-ID. ='rl

The correspondj-ng conditional choice probabilities are

(17)

(18)_ _ exp(g,Iij)
Pjir 

I *,rLq"ij,)
)'

which is identical to (B).

1.4 Coirstraints and Expansions

By introducing additional constraints, the basic choice or
interaction model (8) or (i8), respectively, can be diversified
to fit different planning problems or data situations. Moreover,
by expanding the model by mass terms expressing lhe nunber or
st-ze of the decision maker and/or alternative groups, the model

can be adapted to situations where the number of decision makers
(demand) and the nu:nber of alternatives (supply) are not equal.
Constraints and expansions introduce the dimensions of the prob-
lem into the model, which means that henceforth the model results
are not choj-ce probabiliti-es pij or pj 

]i, 
but predicted choices

or trips t, ..' 1l
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Following Wilson's (1970) classification of spatial inter-
action models, si.x model types can be distinguished. They are
summarized in Figure 1.

As can be seen, there is one unconstrained model, two

product.ion-constrained and attraction-constrained models, and

one production-attraction-constrained model. The unconstrained
model is not really unconstrained, but is constrained only by

the requirement that T, the total of all predicted choices
(trips), equals To, the total of all observed trips. The two

production-constrained models are constrained by the requirement
that, in ad.dition, the number of decision makers in each

decision maker group (or the number of trip origins in each

origin zone) is known and is to be matched in the predicted
choice matrix (trip table). Similar1y, in the two attraction-
constrained models the number of alternatives in each alter-
native group (or the number of trip destinations in each destina-
tlon zone) is known and is to be matched in the predicted choice
matrix (t.rip table). In the doubly constrained model both the
decision maker or orj-gin vector as well as the alternative or
destination vector are known and are to be reproduced in the
choice mat.rix.

The two types of production-constrained models differ in
that one is unexpanded and one is expanded. The unexpanded type
is t}:e multinomial Logit model in its pure form, which allocates
a known number of decision makers or trip origins Oi to alter-
natives of equal size, but possibly different utility. The

expanded version includes a mass term O), which accounts for
the fact that the choice set is subdivided into alternative
groups or zones of possibly different size. Similar1y, the
expanded version of the attraction-constrained model incLudes
a mass term Oi to account for decision maker groups or origin
zones of possibly different sj-ze.

The notation in Figure 1 is the usual compressed form
where the inverse of the denominator is ca11ed a baleneing factor
and is included in the enumerator as Ai, 

"j, 
or C. Note that

the doubly constrained model has two balancing factors, Ai and
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!{ODEL I :

MODEL 2:

MODEL 3:

MODEL 4:

MODEL 5:

MODEL 6:

UNCONSTRATNED (COD)

T.. - C O.D. exp(ß'x..)r-J 1l - --rJ
c = ro / i I oro: exp(ß'xi5)

r.J

PRODUCTION-CONSTRAINED (AO)

T.. = A.O. exD(ßtx..)rJ 1r '' -].J

Ai = , I l, "*p(ß'*ij)
J

PRODUCTION-CONSTMTNED (AoD)

I.. = A.O.D. exp(ßtx..)rJ 1I I "--rJ'

A- = t I I », exp(ß'*,,)r i I " -rJ'
&

ATTRACTION-CONSTRAINED (BD)

I.. = B.D. exD(ßtx..)rJ J J .. _lJ

B. = t / [ ""p(ß'x,.;r.-1j
1

ATTRACTTON-CoNSTRAINED (BOD)

T.. = B.0.D. exo(ßtx..)rJ J r J "--rJ'

B. = | / I o. exp(ß'x..;J I r - --rJ

DOUBLY CONSTRAINED (ABOD)

exp(3t*.,.,)
-J

D. exp (ß'x. . )
J TJ

O. exp(ß'x..)I - *-rJ

I.,rJ

A.
I

B.
J

A. B.0. D.rl1l

I I i e.
!1
:J
J

r/Ie.
,I
1

Figure 1. The six model tYpes.
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B*, which are mutually interdependent. The sequence of balancing
J

factors and origin and destinat,ion terms in the model equations
is used to identify an easy-to-remember acronym for each model

tyPe.

f'or spatial planning purposes, model t'ypes 3 (AOD) and

6 (ABOD) are most widely used. The production-cÖnstrained
l"1odel 3 (AOD) is a general Location model di-stributing all kinds
of activities Oi such as hor:seholds, jobs, shopst ot services
over competing locations D-: such as zones, vacant dwellings, or
vacant land. The doubly cinstrained Model 6 (ABOD) is the basic
model for trip distribution in transportation planning, where

both origins Oi and destinations Oj are projected exogenously.
Various applications of these two model types are discussed,
for instance, in Wilson (1974), Batty (1976), or Foot (1981).

Model 2 (AO) predicts choices between equal sized alternatives
and may thus be viewed as the disaggregate version of Model 3

(AOD). This model is extensively used in disaggregate travel
demand modeling, in particular for mode and route choice (see,

for instance, Domencich and McFadden 1975) . The two att.raction-
constrained models, rYodel 4 (BD) and Model 5 (BOD) , are used

much less frequently, because they present some calibration
problems (which will be shown later) and can be equally well
reformulated as the corresponding production-constrained mode1,

i.e., either as lr{odel 2 (AO) or Model 3 (AOD) , just by exchanging
subscripts. The unconstrained Model 1 (COD) is of no practical
importance and has been included only for demonstration purposes.

1 .5 Variations

Although the six models presented above cover a wide range

of potential applications, there are some widely used variations,
which may continue to be of interest. Such variations include
different forms of the utility functlon or of the attraction
term Di. I t will now be shown that by a simple logarithmic
transformation, some of these can be incorporated into the
six standard models.



(a) The Poaer Function

In some applications, especially in trip distribution
modeling, it may be desired to use the power function instead
of the exponential function as the spatial deterrence termr €.9.:

where c. . is a measure of travel cost. It is easily seen thatr-l
this is equivalent to

t. = A.B.O.O.cl?1l r-lr-lal

t, - = Ar B-O. D- exp (-ß ln c., -, )rl }-l-a-l r-l'

which is a one-parameter version of lvlodel 6 (ABOD) .

(1e)

(20 )

( b ) The Tanner Function

Another alternative to the exponential form of the spatial
deterrence function is the function proposed by Tanner (1961) .

A trip distribution model using the Tanner functj-on

-ß.
t.. = [.B.o.D.c. I

r.l 1I r- I al'exP(-ß2cij) (21)

can be transformed into a two-parameter version of Model 6

(ABOD) :

.ij = AiBjoirj exp(-ßt In .ij -ßrcrr) (22)

( e ) Weighted Ar-traction Terms

In production-constrained location models of the type of
It'lodel 3 (AOD) , the term expressing the attraction of the
competing alternatives or zones sometimes is not a single
variable , D;, but a multiplicative aggregate of attributes)with exponents as weights (see, for instance, the residential
location model by Putman and Ducca 1978bi putman 1980):
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r, - = A,o - "lt ";:,l exp(-ßrcrr) (23)r_laakll(

In this case, the arj are residents employed in zone i allocated
to zone j. This model is equivalent to the following multi-
attri-bute version of Iviodel 2 (AO) :

tij = Aioi ""n(l ok tn xit ß1 1n cr, ßztij) (24)

However, even if the attraction term is a single variable, it
may have an exponent to account for, säY, effects of scale äsr

for instance, in the following version of the Lakshmanan-Hansen
(1965) shopping model:

ryßtij = arotDJcii (2s )

where the t.,-. are shopping expenditures of customers from zoner-l
i in zone ), and the O, are total expendltures of i. This model

could be written as an AO or AOD model:

.ij = AiOi exp(t In ,j 3 ln "ij)

atj = ArOrD, exp (o In D, ß In "ij)

(26)

(27 )

The latter formulation distinguishes between quantitative and

qualitative effects of the size of the shopping facilities in j.

(d) 0ther Variations

There are sti1l other model variations that cannot be

transformed into the six standard models. For instance, models

that are multiplicative in the exponent (cf. Anas 1975) or have

otherwise nonlinear utilities (cf. Wegener 1981) cannot be

esti-mated directly. In these cases, the utilities have to be

determined in a separate procedure before they can be entered
into one of the rnodels.
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1.6 The Calibration Problem

In all of the above models, the parameter vector ß deter-
mines how well the model reproduces actual choice or travel
behavior subject to the given data and constraints. Calibrating
a spatial choice model, therefore, means finding the set of values
of g that yields the closest possible correspondence between

the choices (trips) predicted by the model and actual choices
(trips) observed in reality. It is assumed throughout that a

matrix of observed choj-ces (trips) considered relevant for the
problem at hand is available.

It is the purpose of this paper to propose a method for
estimating the optimal vector ß for this range of models from
a given choice matrix and to present a reliable and efficient
computer program for executing this estimation.

2. THE ALGORITHM

2.1 The Super Model

To calibrate the range of models presented in the preceding
section, a hybrid super modeZ incorporating all terms of aII
six models has been d.evised:

- ft.
.l-

where the constraints are!

B.CO.D.I l-7I
r-l

=1/l,r
r_tj=1/l/"

exp(ß'x..)
- -L)

B,D. exp(ß
)J

A.O. exp(3
IJ-

(28)

(2e)

(30 )

(3t1

A
I )l

'lrl)]

/ ; i A,B.o,D. exp(3'x..)' ! i' i- I r- I ^ -r-l')-)

l
)

I
l_

-r- l

A--o

the absolute choice probabilities (C cancels out)

exp ( ß'x., -., )
L)

oitj oioj

iIij
'al

A. B.O, D. exp ( i'x, . )r- I r- I - - -rl

(32)
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choice probabilities (Ai, Oi, and C canceland

out)

BiDi exp ( ß'Iij )
(33)D,r ='lla Ij

B.D, exp(ß'x.,)) ) ''--11

Erom the super model, all other models can be derived by setting
terms not needed to unity. This is illustrated in Table 1.

Table 1. Derivatj-on of model types from the super model.

Model A.t B.
J

o.
1

D.
J

I (CoD)

2 (Ao)

3 (AoD)

4 (BD)

s (BoD)

6 (ABoD)

I

I

I

B.
J

B.
J

B.
J

I

A.
I

A.
T

I

I

A.t

c

I

I

I

I

I

o.
1

0.
I

o.
l-

I

0.
I

0.
1

D.l
I

D.
J

D.
J

D,
J

D.
J

2. 2 ltlaximum Likellhood

The problem addressed in this paper can now be restated aS

finCing the best-fit parameter vector ß for the super model 1n

its various realizations. As indicated earlier, the mar<imum

likelihood of the cholce matrix has been selected as the crite-
rion of goodness-of-fit.

The maximum likelihood pri.nciple states that, gJ-ven a

stochastic model with unknown parameters, that set of parameter

values is considered to be the best estimate that has the highest
probability of reproducing the data. In this particular context,
the stochastic model is the suPer model defined by (28)-(33),
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the unknown parameters are the g, and the data are the observed
choices t?*. Thd probability that from To independent choicesr-l
a choice matrix t will be generated ls (up to a constant)

L(ß) = IT II p..:
ij"

where L(ß) is the likelihood
tion of the parameter vector
that maximizes the likelihood

function. Ivlaximum likelihood estima-
ß consists of finding that vector ß

function or its logarithm

.o
(g)Eij ( 34)
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(38)

it is temporarily assumed that
are constants, although A, and
(38), depend on ß. Under this
continuous and differentiable

I
i

A.O, exp(ßrx. . )r- r ' - -r-l

where Ar, , j , Oi, and D, are set to uni-ty as specif ied in Table
1 to account for the different model types.

2.3 Derivatives

For macimizing (36) , f j-rst
Ai, ,j, Oi, and Dr, if present,
,j, as can be seen from (37) and

assumpti-on, the function 136) is
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and has a unique maximum. To solve this unconstrained nonlinear
optimization problem, a procedure built on a combination of n-
dimensional gradient search and Newton-Raphson iteration methods

has been developed. Both methods require the first and second

derivati-ves of (36) to be calculated.

For this, equation (36) is rewritten

Max L* (ß)
g

The gradient of

9k(ß) =

and the Hessian matri-x derivatives

t t t?. (ß'x,.,)
? I rt --rJrl

-1

exp(ß'*.-.,) ILJ 
I

functlon is

\,IIPii*iir)iIr- I / t l

mum of the log1i
)

ä ßka ßz

/*rjL - (

The maxi-

ient (40
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I
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where k,L
(35) is w

äq,- (ß)
]L-

-=

aß"
L

p,.x, 
"'rl Lf L

keli-hood

(41)

I
I

J

function

q. (B) = 0-K .:, ft = 1r...rK (42)

The derivatives calculated according to (40) and (41) could
be used for the estimation of the parameters of all six models

contaj-ned in the super model. However , for reasons of computa-
tional effi-ciency, it is preferable to work with the conditional
probabilities pj 

I I instead of the absolute probabilities Pij,
where this is possible. This is the case with models 2 (AO), 3

(AOD) , and 6 (ABOD), in which the production constraint ensures
that
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aL*(ß)
sk(ß) = --TE;

(43)

F,r.X.,, k = 1r...rK'I la alK
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In the maxj-mization procedure
tional probabilities (33) and thei-
are used for models 2 (AO) , 3 (AOD

the remalning three models the abs
their derivatives (40) and (41) ar

2.4 Maximization

The maximization procedure used j-s a

sional gradient search and Newton-Raphson
reason for using two different numerical
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different charact,eristics of these two methods; the gradient
search method in general has a high probability of convergence,
but tends to be slow on flat solution surfaces. The Newton-

Raphson technique is usually much faster, but can diverge from
bad starting values. For a discussion of these and other
techniques for nonlinear paramet,er estimation, see among others
Bard (1974) , Schwetlick (1979) , Stopher and Meyburg (1979\ ,
tlanski and l"lcFadden ( 1981 ) , and Churchhouse ( 1 981 ) .

Both methods start from initial estimates of the values of
B and proceed by iteratively improving them, until an optimum

is reached:

ßn(n+1) = BO(n) + Aßu(n) Jg = 1,...,K (48)

where n is the number of the iteration. The two methods differ,
however, in the manner by which the parameter increments Aßt

are determined.

The gradienü method uses the gradient g to establish the
direction of steepest ascent on the solution surface and uses
the Hessian matri* [ to determine a stepsize for movement along
that direct,ion:

qlq

Aß, = : 
* g,- k = 1t...rK (49)k is'ls.l -K

where again the prime denotes transPosition, and g'9 is the
gradi-ent norm.

The Neuton-Raphson method, on the other hand, solves the
system of K nonlinear equat.ions (421 by approximation usi-ng

Taylor serj-es expansion truncated after the first order term:

sk(ß) + 
ä 

n*a(ß)aß4 = o k = 1,...,K (s0)

or

L 
nor(ß) aßz = -sk(ß) k - 1,...,K (51)
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This system of K linear equatJ-ons with K unknowns can be solved
by a standard numerical technique like the Gauss-Jordan method
(cf. Churchhouse i981) to yield a set of Aß*.

Thus both methods are interchangeable, but of different
effectiveness. The strategy is to use the more efficient Newton-

Raphson technique as much as possible and. to use the gradient
technique only where divergence seems to occur. The optimi.za-
tion process comes to an end when a convergence criterion is met.

2.5 Introducing the Constraints

The optimizati-on procedure described so far is unconstrained,
i.e., it disregards constraints (29)-(31). These constraints
are introduced numerically between iterat,ions by calculating
new balancing factors Ai and B,, where applicable, after each
iteration and feeding them back into the calculation of the
probabilities (321 or (33) in the next iteration. This is
equivalent to numerical approximation of the Lagrangian multi-
pliers of the corresponding constrained optimizatj-on problem.

The balancing factors Ai and B, are calculated using the
biproportional adjustment technique known as Furness or Fratar
method i-n transportation planning and as the RAS technique in
input-output analysis. Willekens et al. (1979) and Willekens
(1980) have shown the close relationshlp of this technique to
the entropy-maximi-zing method. Here the original RAS algorithm
suggested by Stone (1963) for the updating of input-output.
matrices is used.

The RAS algorithm, like all biproportional adjustment
technigues, adjusts the elements of a given two-dimensional
matrix such that (a) given constraints on the marginal sums of
the matrix are satisfied and (b) the adjusted elements of the
matrix stay as close as possible to their prior values. In
other words, Lf io is the prior matrix, the RAS algorithm seeks
to determine two vectors r and s such that

a = rta s- --o-
/(')\
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where 3 is the posterior (adjusted) matrj.x satisfying the
const.raints, hence t,he algorithm's name. It is obvious that,
if 3o is replaced by the predicted choice mat,rj-x t', r and s

contain the desired balancing factors A. and Br.

The RAS algorithm proceeds by iteration. In each iteration,
first the rows and then the columns of the matrix are adjusted
such that

rij (m+1) = tii (m)o, / (m) i = 1,...,I (53)

and

t,r, (m+2) = tij (m+t)Dj / I 
tij (m+1) ) = 1,...,J (s4)

where m is the number of half-iterations. The algorithm is
certain to converge to a unique optimum and ends when a conver-
gence criterion is met.

The balancing factors A, and
in each iteration

can be derived by calculating

Ar(m+1) =Ai(m)Oi/ft,-tm) i=1,...,r(55)
J LJ

and

B-(m+2) = Bi(m+1)Di / i ar.., (m+1) j = 1,...,J (56)
) ) t j L)

Note that initially all A, and B, are set to unity and that they
retain their updated values between calls of the RAS algorithm
to speed up convergence.

Of course, the above iterative adjustment applies only to
the doubly constraj.ned Model 6 (ABOD) where Oi and ,j are to be

matched by the row and column sums, respectively. For the two
attraction-constrained Models 4 (BD) and 5 (BOD), only the
second half of the RAS algorithm, i.e., equations (5+1 and (50;,
need to be passed., and this requires no iteration. No pass

through the RAS algorithm is necessary for estimating the remain-
ing l,lodets 1 (COD) , 2 (AO) , and 3 (AOD) , because in these mod,els

the balancing factors do not affect the estimatj-on results.

I t. ,I ':

D,l
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3. THE PROGRAM

3. 1 Program Organization

The above callbration algorithm has been implemented in a

computer program called LOGIT.

LOGIT is written in Fortran. It consists of a short main

program and 1g subroutines. Each subroutine performs a specific
task and returns its result to the calling program. Figure 2

represents the hierarchical organj-zation of LOGIT:

PROBl

Figure 2. Program organi-zation of LOGIT.
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The program is organized such that with one set of input
data several calibrations using different constraints and/or
attributes can be performed. This is the outer loop of the
program. V'fithin each calibration, the optimal-fit parameter
vector is approached by iterat,j.on. This is the inner loop.
Figure 3 is a flow diagram showing the normal flow of information
within the program. In addition, but not shown in Figure 3,
there are options permj.tting the user to interrupt the itera-
tion process, inspect intermediate results and then continue,
restart t ot end the calibration.

Two kinds of subprograms can be distinguished. The first
one performs calculations and input and output operations. The

second one Ieads a dialog with the user. The main program and
the first-leveI subroutines IDAT, ltlDAT, and ECAL are of the
second kind. They prompt the user for informatj-on or decisions
necessary for running the.program. While everything has been
done in these subprograms to make interaction with the program
as convenient as possibler no effort has been made t,o anticipate
or correct user errors.

3.2 Subprograms

In this section, the 20 subprograms of LOGIT are briefly
discussed. The source cod.e of aI1 subprograms is listild in the
Appendix.

I,IAIN: The main program controls the outer loop of the
program. It calls IDAT once and MDAT and ECAL once

for each calibration.
IDAT: IDAT prompts the user for the dimension of the

problem: the number of origins (decision maker

groups), destinations (alternatj-ve groups), and

attributes. The number of origins need not to be

equal to the number of destinations, i.e., the trip
table (choice mat,rix) need not to be square. Two

kinds of attributes are distinguished: attributes
that vary only over destinations and at,tributes
that vary over origins and destinations (see section
1.1).
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Figure 3 Flow diagram of LOGIT.
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IPUT: This subroutine reads the input data.
accepts three kinds of data:

The program

(a) 0z,igins and/or destinations.' These are optional.
If absent, origins and destinations will be inferred
by aggregation from the observed trip matrix.

(b) 7bserued. trip matrix.' Row and column sums of
this matrix need not coincide with the above

origins and destinations.
(e) Attributes: These can be either attributes of
destinations or of trips.
Format and organization of the input dataset are
specified in section 3.3.

NORM: AII attributes read are subsequently normalized
such that the value halfway between their extremes
is between -1 and *1. This serves three purposes.
First, it separates the scaling and the weighting
function of the parameters and thus makes them
comparable. Second, it contributes to keeping
parameters in a range acceptable for exponents by

computers. Third, it increases the precision of
the parameter estimates; precisj-on is expressed in
signifieant digits rather than in digits. The

normalizing factor of each attribute is stored for
later use.

MDAT: For each new calibration, MDAT prompts the user
for model type, speci-fication of origins and desti-
nations, and selection of attributes. Attri-butes
may be selected from the attributes present on the
input dataset in anY order.

INIT: Depending on these specifications, INIT initializes
model arrays, in particular origins, destinations,
and balancing factors. The balancing factors are
always set to unity
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This subroutine controls the execution of one

calibration. It asks for a Start vector of betas

as initial values and calls MLML, which performs

the parameter estimation. In addition, ECAL handles

the options permitting the user to look at inter-
mediate results, restart the calibrat,ion r at specify
the program outPut.

This subroutine controls the parameter estimation
process, i.€., the iterative maximization of the

Iikelihood functlon. Depending on the model type

selected, MLML in each iteration cal1s the requisite
subroutines calculating balancing factors, proba-

bilities, and derivatj-ves. For the calculation of
parameter changes, MLML normally calls the Newton-

Raphson procedure NEWT. However, if the parameter

changes, instead of gettinq smaller, continue to
j-ncrease considerably over more than one i-teration,
MLML assumes that divergence is occurring and cal1s

the more reliable gradient search procedure GRAD'

In the first iteration, GRAD is always called to
avoid divergence due to bad starting values. l'lLML

also checks parameter values and if they become

too large asks for a new start vector. If the
parameter changes approach zeto at the level of five
significant digits, it is assumed that the optimum

has been reached and the iteration process is stopped.

This subroutine caiculates the choice probabilities
following equation (33) . These probabilities add

up to unity in each row and thus are appropriate
for model types 2, 3, and 6.

In this subroutine, the first and second partial
Cerivati-ves of the likelihood function are calculated
according to equations (45) and (46), respectively,
using the probabilities calculated in PROB1.
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PROB2 is equivalent to PROB1, except that the prob-
abilities are calculated as in equation (32), i.e.,
add up to unity over all rows of the choice matrix.
These probabilities are used for model types 1 , 4 |

and 5.

DERV2 is equivalent to DERV1, except that equations
(40) and (41) and t,he probabilit.ies calculated in
PROB2 are used.

Subroutine GRAD is called when the gradient search
method is to be applied. GRAD calculates an

increment to each parameter accordj-ng to equation
(4e).

Subroutine NEWT is called when the Newton-Raphson
method is to be applied. NEWT calculates the
parameter increments by solving the system of linear
equations (51) using the Gauss-Jordan method (cf.
Churchhouse 1981 ) .

BETA wrj-tes the estimated parameter values on the
terminal and/or on the output pri-nter file. Note
that these parameter values have to be multiplied
by their associat,ed normalizing factors.
This subroutine generates the trip table or choice
matrix following equation (28) using the new param-

eter estimates and the balancing factors of the
previous iteration. During the estimation process,
calculating trips i-s necessary only for model types
4 (BD) , 5 (BoD) , and 6 (ABOD) , while after the
estimation the subroutine is used to generate the
trip table for the output dataset regardless of
model type.

This is the RAS algorithm for matrix adjustment
according to equations (S3)- (55) . Duz,ing the
estimatj-on process, the subroutine is caIled only
for model types 4 (BD) , 5 (BOD) , and 5 (ABOD) . After
the estimation, when preparing the output dataset,
the subroutine is used for ali model types except
Model 1 (COD) .
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I4EAN: This subroutine calculates totals and/or means of
trips and attributes of the observed and predicted
trip table. Observed and predicted values are

equal if origins and destinations are taken from the

observed trip table, but may differ if other origins
and,/or destinations have been specified. Note that
the normatized attributes now have been restored
to their original magnitudes.

STAT: In this subroutine, a number of stat,istics expressing
the goodness-of-fit between the observed and the
predicted trip table are calculated and written on

the termj-nal and/ot the output printer file. The

following statistics are used:

(a) LoglikeLihood ratio.' the ratio between the
maximum value of the loglikelihood function achieved

in the calibration and the maximum possible value.
A ratio of one would result if both trip tables
were identical:

Note that the constant term -To In To has been

dropped in the denominator and in the numerator to
make the measure more sensitive.
(b) slop,e b aitd. intercept a of a regression line

ot,, = ot. + ar-l rl
(e) correl-ation coeffieient r, coefficient of Ceter-

2'mLnatlon r , ani t of r:'in their usual meaning

(d) mean absoLute percentage error calculated as

I t t?. rn t..I L. rl rl
'LR = 

r I - 
-

I I '?: rn t.?:
r-l -

t I rt9. t..lL L '. rl l-l'
MAPE=iJ t i t9,'7 rli:

(57)

100 (sB)
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These statistics are most meaningful if origins
and destinations are aggregated from the observed
trip table. If other origins and destinations are
specified, the statistics represent the combined
effect of differences in the constrainLs and of
errors in the prediction.

TTAB: This subroutine writes the predicted trip table
(choice matrix) on the output dataset. The format
of a trip table on this dataset is identical to
that of the obserVed trip table on the input data
set (see section 3.3).

3.3 Input

Input is entered to the program through the user's termlnal
(Fortran number 5) and an i-nput dataset (Fortran number 8) .

While input requests by the program at the terminal are self-
explanatorlr the organization and format of the input dataset
need to be specified.

The input dataset is organized by record groups. Each

record carries a record group identification. Within each record
group, the records are sort.ed in ascending order. Record group

identificatlon and sorting number are not read by the program.

The dataset consists of B0-byte card-image records with
the following format:

column
column
column
column
column
column

i -4
5-8
9-10

11-7 A

7 1-72
73-80

record group identification
sorting number
blank
1 0 data fields, 6 columns each
blank
seguence number

The data fields may or may not contain a decimal point at
desired position. On some computers, no sequence numbers
recogni zed.

There are four kinds of data on the input dataset: (1)

origins and destinations, (2) observed trips, (3) attributes of

any
are
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zones, and (4) attributes of trips. They are stored in this
order on the dataset:

(1) Origins and. destinations.' The first records contain

first the origins, ten to a record, and then the

destinations. If I is the number of origin zones,

(r1)/10+lrecordsareneededfortheorigins.
If J is the number of d'estination zones, (i 1)//iA + 1

records are needed for the destinations. Origin and

destination records may be blank if origins and destin-
ations are to be taken from the observed trip table.

(2) Obserued tyip table: observed trips are stored ten

to a record in (,r - 1)/10 + 1 record groups, each

containing I records. Hence, I(J 1)/10 + 1 records

are needed to store the trip table. wlthin each record

group, ten columns of the trip table are stored (possibly

less in the final record group). To give an example,

for a 30-zone system the following records wil-i result:

record 1-30 triPs to zones 1-10
record 31-60 triPs to zones 11-20
record 61-90 triPs to zones 21-34

(3) Abtrtbutes of zones: Zonal attributes are stored from

left to right on one record per zone. Thus J records

are needed for storing zonal attributes. If no zonal

attributes are present, ro zonal attribute records

must be included in the dataset '

(1) Ättributes of iz,ips: ?rip attributes are stored as

matrices of exactly the same format as the observed

trip table. Any number of attribute matrices up to
the maximum number of attributes may be present.
If no trip attributes exist, the dataset ends after
the zonal attributes records.

The program is presently dimensioned to handle up to 30

origin zones (decision maker groups), up to 30 destination zones

(aiternati're groups) , and up to B zonal or trip attributes.
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The last page of the Appendix contains a test dataset for a

1 g-zone system with no zonal atlributes and four trip attributes.

3.4 Output

Output is written by the program to the user's terminal
(Fortran number 6), to a print,er file (Fortran number 7), and

t,o a card-image outPut dataset (Fort,ran number 9). Except

terminal output, all outPut is optional.

The printer file contains the estimation results and

statistics as produced by subroutines BETA, MEAN, and STAT.

The card-image dataset cont.ains the predicted trip table in
the same format as the observed trip table on the input dataset.

3.5 Portability
The program LOGIT is written in a subset of Fortran 77 that

should be compatible with any Fortran IV compiler (if the few

CHARACTER specificatj-ons are removed). The program requires
no other subroutines or functions except, standard functions.

Although the program is presently dimensioned to handle

a 3O-zone system and up to 8 attributes, these d,imensions can

easily be adapted to larger problems.

To facilitate portability, input and output have been

deliberately kept primitive on the assumPtion that researchers
working in this field have at their disposal programs for pro-
cessing and displaying data of this kind.

4. AN APPLICATION

4.1 The Data

In this section, ä!I illustrative application of the program

LOGIT will be presented. The data for this application have

been taken from a project on spatial change processes in the
urban region of Dortmund, FRG (cf. Wegener 1982) . The region
has a population of about z.ts million and is subdivided into 30

zones in the project.
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The data used in this application are work trip data of

the year 1g7O and travel times and travel costs of both the

publ-ic transport and the highway system. No origins or dest'in-
ations different from those of the observed work trip table
are provided, nor are any zonal attributes or at'traction vari-
ables. Thus, the input dataset for this 3Q-zone system con-

sists of six bi-ank records (substitut'ing for the origins and

destinat'ions)plusfj-veblocksofmatrixdatawith90records
each (one matrix containing observed work trips and four
matrices containing trip attributes) .

For demonstrat,ion purposes, also a 2O-zone system and a

1$-zone system have been artifically created by taking the

innermost 20 or 10 zones of the 30-zone System, respectively,
ciiscarding the rest. of the region. The test dataset listed
in the Appendix is the input dataset of the lo-zone system.

The travel time and travel cost data were derived from a

transportation model based on public transport and' highway link
data and employing minimum-path and congestion-sensitive
assignment techniques. Public transport travel times include

access, waiting, in-vehic]e, and transfer waiting time. car

travel times include accesS, driving, congestion, and parking-

search time. Pubi-ic transport costs are based on a flat fare
plus a distance-dependent component. Car travel costs only

include out-of-pocket costs of a car trip, i.e., gasoline Costs

and parking fees.

4.2 A Smali Model

First, a very small appiicat:-on exanple wili be presented

in detail. It uses the 1o-zone systern with a reduced dataset:

only the two travel time attributes are considered. The reducec

input dataset is shown in Figure 4 '

The task is to estimate the parameters of a i;rt;' ä'lstr'ubutton

model from these two attributes such that (a) the preoictec
origins and destinations equal the origins and destinations
of the observed trip table, and (b) the predicted flows are as

close to the observed flows as poss:-ble. Obviously, the appro-

priate model type j-s Model 6 (ABOD) .
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Figure 5 is a protocol of the dialog between the user and

the program LOGIT as it would appear on a hardcopy terminal.
It can be seen that the progräIllr aft.er having received its
directions, writes the results of each inner-Ioop iteration on

the terminal: the first column Ut) is the number of the cur-
rent iteration. The second column (ras) shows the number of
iterations required in the RAS algorlthm to reach convergencei
this number starts at one (a conseguence of choosing two zeros
as starting values), then jumps to six and. gradually returns
to one. The third column monitors the aecumulated absolute
change of the parameter values occurring in this iteration.
It can be observed that the gradient search method (which is
always called into action in the first iteration) pushes the
parameter values from the arbitrarily selected starting values
already very close to their final position. The rest is accom-

plished by the Newton-Raphson method in sj-x more iterations,
and it can be seen that the parameter changes decrease rapidl-y
from one iteration to the other.

The program then displays the result of the calibration,
i.e., the final parameter values with their normalizing factors
(see subroutine NORM). The notation used means that in thi-s case

both parameter values have to be multiplied by 1O'2. As one

might expect, the parameters of both at.tributes carry a minus
s ign

The user may then ask for some statistics about the solution
and he will see the results of subroutines MEAN and STAT dis-
played on the terminal. As is to be expected, total trips,
trips per observation, and the means of both attributes are
identical for the observed and for the predicted trlp matrix.
The high loglikelihood ratio seems to indicate a very good flt.
AIso the slope and intercept of the regression line are very
close to one and zero, respectively, where they belong. The cor-
relation coefficient and the r2-statistic, too, convey a close
correspondence between observed and predicted trips. However,

the mean average percentage error could be less for a doubly
constrained model.
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speclfy input d.ata:
enter no. of origins (decisionnaker groups)

10
enter no. of destinations (alternatives)

10
önter no. of attributes of alternatives
enter no. of trlp (aistance ) attributes

aa
specify model data:
seleet model type:
1 unconstrained (cod )2 prod.uet ion-const rained (ao )
1 produet ion-const rained (aod )
4 attract iorr,-co nst rained (f a )
5 attraet lon-constrained (Uo0 )

. 5 doubly const rained (abod )
6
speclfy origins:
1 take fron input origins
2 aggregate from observed. trips (choices)

2
specify destinations:
1 take from input destinations

- 2 aggregate from observed trips (choices)
2
attribute selection?

n
enter start vector beta: 2 numbe r (s )

0ro
seleet one:
1 stop after intermediate steps
2 continue until final solution

aa
it ras change beta 1 beta 2
1 1 8.890' _6 .7 484 _2 .1419
2 6 0.9479 -7.0615 -2.77681 4 0 .1 46 4 -7 .O5Bg -2 .9205
4 3 0.0221 -7 .0567 -2.94045 2 o .0028 -7 .0564 -2.94296 2 0 .0004 -7 .0561 -2 .9 432
7 't 0.0000 -7.0563 _2.9473

gradient search terninated at iteration 7parameter changes less than specified 11mit

doubly constrained rnodel (abod):

beta 2 (i .e-02) -i .0561
-2.9411

Figure 5. Calibration of sma1l model.
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sele ct one :
1 new start vector beta
2 repeat with present balancing
1 statistics
4 continue until final solution
5 exit

7

obs e rve d.

100
1 98529

1gB7.2g
29.952
20.058

factor(s)

predicted
100

1 98129
1983.29
29.932
20 .068

o .9971
1 .0021

^ 4^-+'t+
0.9892
0.9784
66.7A
13 .46

totals and means:
observat ions
trips (choices)
trips/observat ion
mean of attrrbute
nean of attribute

1

2

stat ist ics:
loglikelihood rat io
slope.
intercept
correlation coeificient r .

r-squared
t of r-squar ed
mean absolute percentage error

sele ct one:
1 new start vector beta
2 repeai w:lth present balancing f actor (s )

1 stat ist ics
4 cont inue unt i1 final solutio n
5 exit

tr

output ?

v
another try?

n

Figure 5. Continued.
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In Table 2, observed and predicted trips are compared. As

specified in the constraints, row and column totals of both trip
tables are equal (except for round-off errors during Printout).
However, a flow-by-flow comparison between observed and predicted
trips reveals that the predict.ive power of the calibrated model,

despite most goodness-of-fit statistj-cs being excellent, is
no more than satisfactory. This suggests caution towards most

goodness-of-fit statistics of spatial interaction models except
the TIAPE statistic. This view has been expressed also by other
researchers (see, for instance, Smith and Hutchinson 1979) .

4.3 More l,lodels

In a similar $ray as demonstrated with the small mode1, the
program !,ras tested with a variety of zonal systems, numbers of
attribut,es, and model types. In particular, it was investigated
how sensitive the calibration results are to variations in zones,
attributes, or model type, keeping everything else equal. The

results of these experiments are summarized in Tables 3-6.

In t.he first, experiment, one model type, Model 6 (ABOD),

rras tested with different zonal systems and between one and

four attributes. It may be recollected that the three zonal
systems used are not really different, but that the t\^Io smaller
ones are subsets of the 30-zone system. Table 3 shows the
parameter values estimat,ed in the calibration, and Table 4 shows

selected goodness-of-fit measures associated with them.

It can be observed that adding more attributes to the model
in general increases its explanatory pohrer, but not in all cases.
Most often, a considerable improvement in fit is achieved by
adding the second attribute, but only very little is contributed
by the third and fourth one. The parameters of three of the
four attributes always have the expected negative sign, while
the parameters of the third attribute, obvj-ously due to inter-
actions between the attributes, always turn out, to be positive.
This is disturbing, since this attribute represents public
transport fares.
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Table 3. Calibration results of Model 6 (ABOD) for different
zonal systems: parameters.

Number of
zones

Number of
attributes

beta I
x O.0l

beta 2
x o.ol

beta 3
x O.l

beta 4
x O.l

lo I

2

3
4

-7.9009
-7.0563
-7.3850
-7 .4676

-2,9433
-3.2000
-2.5328

+O.55924
+0.58784 -o. t26ga

20 I

2

3
4

-8.453 r

-6.2621
-6.2789
-6 .7 472

-6.5190
-6 .57 t7
-2.7470

+O.2707
+3.2603 -6.9092

30 I

2

3
4

-9.0090
-i6.0485
-6. r4r8
-6.3721

-8.2175
-8.4361
-6 .7 t60

+O.9683
+2.2035 -2.8184

ax l.o

Table 4. Calibration results of Model 6 (ABOD) for different
zonal systems: st,atist,ics.

Number of
zones

l.lumber of
at tributes LLR Slope InCercept MAPE

lo I

2
3
4

0.9968
0.9971
o .997 3

0.9973

l.oo28
I .OO2l
0.99 lo
o.9924

-15.28
-4 .14
17.87
15.10

0.9730 14.89
o .97 84 13 ,45
0.9780 t3.43
O.9782 13./+8

I

2

3
4

20 0.9936
o.9954
0.9954
0.9956

I .03 r4
l.or43
I .0 137
1 ,O144

-28.17
-t2.78
-12.27
-12.92

0.9781 19.57
0.9868 15.56
0.9868 15.s7
o.9877 t5 .29

30 I

2

3
4

0.9936
0.9956
0.9956
0.9956

| ,ot27
1.0070
t.oo72
r.0088

-12.25
-6.72
-6.97
-8 .48

o.9949 17.43
o.9973 r3.Or
a.9973 13. rO
o.9973 r 3.06
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Table 5. Calibration results of different model tyPes for
30-zone sYstem: Parameters.

Number of beta I beta 2 beta 3 beta 4

l,lodel attributes x O.Ol x O.0l x O.l x 0' l

I (COD) r -7.6?tO
-7.0815 -l.08l5
-5 .5 l 09 -0.994 I - I O. 0975

_4.8385 -6.8728 _16,2628 +l I .3280

2

3

4

2 (Ao) l -9.3440

-8.8248 '1.4775

-8.0403 -O,t299 -7.2623

-lo.03l7 +16.5646 +4.9628 -29.5222

2

3

4

3 (AOD) i -9 .1 192

-6.0140 -8.0077

-5.9998 -7.9840 -O.1267

-5.8502 _9.ZZ7l _1.3382 +2.4552

2

3

4

4 (BD) I -9.2288

-8. l 183 -3.0334

-7 .@52 - l . 7155 -9 .2298

-7.7352 +4.0910 -4.5550 -10.4606

2

3

4

5 (BoD) I -8. 3357

-6.5403 -4.6992

-5.8937 -3.7 t7 t '5 .7258

-5.8097 +2.854 I +O. I 330 '11 .8827

2

3

4

6 (ABOD) I -9.0090

-6.0485 -8.2175

-6. l4l8 -8.4361 +o.9683

-6.3721 -5.7 160 +2.2035 -2.8t84

2

3

4
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Tab1e 6. Calibration results of d,iffereni, model types for
3O-zone system: statistics.

Model
Nunber of
attributes LLR Slope Intercept, ,2 MAPE

l (coD) I

2

3

4

o.9702

o,9704

o.9721

o.9728

o.8238

0.8417

0.8194

o.8272

170.21

152.94

174.42

166,91

0.8692 57.97

0.8594 57.88

o.88lo 55.41

0.8825 55.60

2 (Ao) I

z

3

4

o.9778

o.9779

o.9 786

0.9819

| . t425

l. r45l

r. 1300

t .1232

-t37 .64

-r40.15
-125.5s

-il9.O2

0.9633 40.94

o.9640 40.73

0.9712 38.99

0.9701 34.63

3 (AoD) I

2

3

4

0. 99 10

0.9935

0.9935

0.9935

l.ooro
| .0127

t .0126

l.ot26

-o.94

-t2.31
- 12. l8

-t2. t6

0 .9 889 22 .O4

o.9914 18.80

o.99t4 18.79

0.9916 18.62

4 (BD) I

2

3

4

o.983 I

0.9835

0.9846

0.9849

t.tt27
l.lt53
l. ro15

r . ro98

- 108.9 r

-t 1o.42

-98 .08

-l06.06

0.9653

o.9640

o.9764

o.9782

35.79

36 .01

33.60

32.60

s (BoD) I

2

J

4

0.9845

0.9845

0.98s8

o. 9863

a.9765

0. 9802

o.9775

0.983 I

22.7 1

19. ro

27 .75

16,34

o.9767 33.32

o.9760 32.89

o.9782 32.62

0.98r r 31.56

6 (ABOD) I

2

3

4

o.9936

o.9956

0.9956

o.9956

t.ot27
I .0070

t.oo72

1.0088

-t2.25
-6.72

-6.97
-8.48

o.9949

0.9973

o.9973

o.9973

t7 .43

13.01

13. io

r3.06
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As may be expected, the parameter values change if more

attributes are adcled to the model. However, they also change

wnen more zones are add.ed to the spatial system. This is no

less dj-sturbing, since it means that either different spatial

behavior is present in different Parts of the urban region or

that the spatial deterrence function of this kind of model is
dependent on the trip length distribution in the system, or both'

In the second experiment, not the system size, but the

model type was varied. Now all six model types of Figure 1

were apptied to the full 3Q-zone system. Tables 5 and 6 sum-

marize the results of these calibrations.

It can be seen that the different constraints imposed by

the different models have an even st,ronger effect on the param-

eter values than changes of the zonal system. Now the paramet,ers

of some attributes even change their sign. Moreover, the magni-

tudes of t,he same parameters differ considerably between model

types. Not surprisingly, the goodness-of-fit measures achieved

with the six models differ widely. The model type consuming

the maximum amount of exogenous information, Model 6 (ABOD),

is the most successful in reproducing the observed trip matrix,
while the model that uses the least such information, Model 1

(COD), performs !,rorst. This conforms with the findings of
Openshaw (1976). As in the first experiment, the most sensitive
goodness-of-f it measure seems to be the I'IAPE statistic, which

varies between 1 3 percent for the two-parameter ABOD model and

58 percent for the one-parameter COD model, or by a ratio of
aLmost 1 :5.

The results of both experiments are rather depressing.

They say that the precision with which the model parameters

are estimated in the calibration procedure is a spurious one '
In fact, the estimated parameters are more likety to be an

artefact of the accidental combination of zones, attributes,
and, constraints than a true representation of spatial behavior.

If this i.s correct, the usefulness of models estimated by

these (and similar) techniques would be severely limited. For

forecasting purposes, they would only be applicable if no major
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changes in the zones, attributesr or constraj.nts occurred in
the forecasting period-a very unlikely and uninteresting case.
They would be completely useless where the impacts of major
changes of the model environment are the object of investiga-
tion. For instance, forecasting the impacts of rising gasoline
prices on residential location using the four-parameter Model 3

(AOD) wouLd lead to strange resul-ts, since in this model car
trip costs happen to figure positively. Even the crudest
heuristic choice of parameter values guided by common sense
(e.9., equal weight.ing of attributes) would lead to a more
plausible forecast.l

ll . 4 Program Perf ormance'

Throughout the above experiments, LOGIT proved to be a

reliable and efficient program. In all cases, the program

reached convergence even from remote starting values. The

program never needed to ask for a neh/ start vector.

The number of iterations required for each calibration is
comparable to numbers reported by other authors (Batty 1976i
van Est and van Setten 1977) . Remarkably, the number of it.era-
tions was found to be almost independent of the starting values
selected or of the number of zones or attributes. However, in
the model types 4 through 6 requiring the calculation of balancing
factors in the RAS procedure, the number of iterations increases
with the number of attributes and with the number of zones.
The largest number of iterations was required for the doubly
constrained Model 5 (ABOD).

Table 7 summarizes the performance of the program for Model
3 (AOD) and Model 6 (ABOD) with the three zonal systems used in
the experiments. In aII cases, zeros were entered as starting
values. The table shows for each model and each comblnation
of zones and attributes the number of iterations and the computing
time. The computing time includes the time for reading the input
file and writing the or:tput files anci represents processj-ng time
in seconds on the IIASA VAX 11i'78A computer. The VAX is reported
to be about four times slower than the IBM/370-168. The Mode1 3
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results are representative also for Mode1s 1 (COD) and 2 (AO),

whiie the results for l,lodels li (BD) and 5 (BOD) lie between

the results listed for Mode1s 3 and 6 -

At the beginning of the experiments, the program converged

much slower in the four-parameter ABOD model, regiardless of
the number of zones. Equally slow convergience was observed when

attribuLe 4 was entered as the only attribute. A closer inspec-

tion of the travel cost matrix of attribute 4 revealed that
excessively high parking fees had been assumed for zone 1, the

central business district, producing extreme imbalances in t'he

cost mat,rix. After these distortions had been removed, attribute
4 behaved reasonablY.

Table 7. Number of iterations and conrputing tj-me of Models 3

(AOD) and 6 (ABOD) for different zonal systems and
numbers of attributes.

I"Iodel 3 (AOD) Model 6 (ABOD)

Number of
zones

Nuraber of
attributes

Nunber of
iterations a'f rme

Number of
it,erations alrne

t0 I

2

J
4

4
4
5

5

o.7
o.9
1.3
i.6

t.i
1.5
1.9
6.5

5
1

7

24

i

2
?.

4

20 5

5
6
6

r.8
2.7
4.2
5.4

10

21
21

32

6.4
14.2
t7 .6
33 .0

I

2

3

4

30 6
6

6
6

4.1
6.4
8.6

r 1.5

i3
3r
28
4l

17 .3
43.8
50.9
88 .6

4proc.ssing time on the rrASA vAx I l/78o coüputer in seconds
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CONCLUSIONS

In this paper, a reliable and efficient computer Program
for estimating spatial choice models with multiattribut.e utili-
ties has been presented. The application of this program for
a wide range of spatial systems, attributes, and model types
has been demonstrated. However, the experiments also revealed
serious problems connected with the stability and interpreta-
bility of the parameter estimates in the face of changing model
environments and in the presence of int.eractions among attributes.

fwo, perhaps complementary, strategies for further research
may be derived from these results. One strategy would go in
the direction of further refinement of the models and their
calibration. One important issue under this strategy relates to
feedbacks that exist between demand variables, such as trip
distributj.on or locatj,onal choi-ce, on the one hand, and supply
constraints in the interaetions, such as highway congestionr orl

t.he other hand. In the application presented this would mean

to feed the esti-mat,ed model parameters back i"nto the congestion-
sensitive transport, model used to determine travel times and

travel costs. Ideally, the transport model wou1d, for a given
set. of parameters, simultaneously solve the trip distributj-on
and trip assignment problem under given link capacity constraints
yielding equilibrium travel times and costs. Algorithms that
do this consistently and efficiently have been available for
some time (Evans 1976t Florian and Nguyen 1977) . If the equi-l-
ibrium travel ti-mes and costs are used to recalibrate the model
with the LoGIT programr a different set of model parameters may

result. These then can again be fed into the transport model,
and so on until the process converges, i.e., true equilibrium
model parameters and lraveL times and costs are derived. Such

a procedure has been suggested, for instance, by Boyce et al.
(1981).

However, it remains to be seen if such a complicated pro-
cedure would indeed substantially improve the explanatory power

of this kind of models. ?he results of the two experiments
presented in the preceding section suggest a rather cautious
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this matter. Therefore, a second research strategy may

pursued that, _instead of getting the maximum fit out

of the data as they are, seeks to improve the model by respeca-

fying the data. This would include experimentation with less
rigorous, but more behaviorally orient,ed methods for attribute
selection, transformation, and aggregation making use of judg-

ment, plausibility considerations, and sensitivity analysis'
It can be shown that calibration result's achieved with such

"Softer" methods can be comparable or even better than results
derived from rigorous statistical estimation (cf . !'Iegener 1981).

It is hoped that by combining soft calibration methods with
efficient statistical techniques like the one presented in this
paper, more meaningful and consistent models, which also make

better predictions, can be developed.
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APPENDIX: Fortran Listing of the LOGIT Progrram

c

c

c

c
C

progran logit

estination of the parqoeters
of a roult j-nooial logit roodel
',ri.th oarginal constraints
and oult iattri.bute utilit ies

authors: oichael wegener
friedrich graef

dater 14 july 1 982

dioenslon ov(B),bf(B)
character*1 roa, no

data no / ,n'/

call i.dat (nt, na, nx, nv, bf )
mo =010 nn = mm+1
call mdat (nrornc, ot, nt, na, nx, nx, nv )
call e ca.l (na, ne, trt, nt, na,ox,mv, bf )write (5,6000)
reao (),)0O0) ma
if (oa.ne.no) goto 1O
st op

5000 fornat (a1 )
600C fornat ( ' ano.ther t ry ?, )

end

subroutine idat (nt, na, nx, nv, bf)
specifying the input data

di.roension ov(8) ,bf (B)

write (5,6000)
write (6,501 0)
read ( i, *) nt
write (5,5020)
noorl /tr +\ -^\), / -Ldwrite (6,6010)
taoÄ 1q *\ --i\r, ) t:^.)
write (6,504C)
read (5,*) nxiS
call iput tnt, na, nx j, nxi. j,cv )nx - nxj+nxij
call norm (n!, na, rx, bf )
re tu rn

c
c
c

6000 format
601 O forGat
6020 f orraat
6010 foroat
5C40 format

end

' specify input data: ')
' enter no. of origins (decisionmaker groups),)
' enter no. of destir,aticns lalternatives)i )
' enter no. of attributes of alternatives')
' enter no. of trip (distance) attribut'es')

-51-
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subroutine i.put(nt, na, nx j, rxij, mv )

reuding the input data

con&on*oo(lo) ,ö)

dinension ov(8), xj (8)

read (8,8000) ( oo (i ) , i='t , nt )
read (8,8000) (do(i),1=!,na)
nk = (na-1 )/t0+r
do 100 il4 =1 , nkja = (ik-1)*t9*,
je = nln0( ja+9, na)
do 1OO i=l,nt
read (8,8000) (to(i,;),3=;a,;e)

1 00 cont inue
if (nx j,eq.O) goto 'l O
nk = (nx;-t )/t0+t
do 200 ik -1 , r&
ka = (lk-t )*19*1ke = roin0(ka+!,nxj)
do 200 j=1 ,na
read (8,BO0O) (xj (k),k=ka,ke)
do 20O i=1,nt
do 200 k=ka,ke
x(1,j,k) = xj(k)

2OO cont inue
do 100 k=l , rx j
nv(k) = k

J0O cont inue
10 if (nxi j. eq.0) return

nk = (na-1 )/tqa1
do 400 Y=t ,nxij
nv(nxj+k) = nxj+k
do 400 ik-l , nk
ja = ( ik-t )* 16*1je = min0( ;a+!, na)
do 400 i=1,nt
read (8,8000) (x(i,1,nxj+k), j=ja, je)

400 cont inue
return

EOOO format (10x,10f5 .0)
end

subroutine norn (nt , na, rx, bf )

normaliz ing all attributes

comßon a( )ui , b( ru, , o(rul , d(ru) ,*oo(Jo), do (j0) ,to(3o,10') ,x(1o,3o,a)
cimens ion bf(E)

do 200 k=1 , nx
xnax = _1 .eJ0
xnin = 1 ,e3A
do 210 i=1,nt
do 210 j=1 ,na
xnax = anaxl (xmax,x(i,i,k ))
xni.n = aninl (xnin,x(i, i,t ))

210 eontinue
alf.a - xoln+( xmax-xnin)*0.5
i 1og = alo41 Q( ana )* 1 .
bf(k) = 1./t9+*11o*
d,o 22O i='l , nt
d,o 22O j =1 , na
x(i, j,k) = x(i, j,k)*urtr)

220 corrt inue
200 eont inue

retu rn
end

a(lo), b(10), o(lo), d(10),
, do ( 3o), to ( lo,lo), x(1o,jo



c
c

subroutine odat (norBc, ßt, nt, na,nxrBxr&v )

speclfylng the oodel data

dlmens ion ov (8)

character*1 na,no

data no l'n'/
write (5,6000)
write (5,6010)
read (5,*) nt
ao = jmd=J
if (mt.ne.4) vrite (5,6020)
if (rot.ne.4) read (5,*) mo
rf (mt.ne.2) write (6,5010)
if (mt.ne.2) read (5,*) nd
ca}l inj.t (nt,no,rod, nt, na)
if (mo.Ct.1) goto 10
0c=0
ElX =nXwrlte (6,6040)
read (5,5ooo) raa
if (na. eq. no ) return
goto 20

10 nc = 1

write (5,5050)
read (),)uou) ma
if (na.ne.no) return

20oc=0
vrite (6,6060)
read (5,*) mx
wri.te (6,6070) ox
read (5,*) (ov(k),k=1,ox)
re turn

format (a1 )

for6at (' speeify nodel- data:')
f orrsat ( ' s e Ie ct raode 1 typ e: ' /* ' 1 unconst rained ( cod )'/

-53-

' sartre attribute(s) as before?'
' hcw many attributes?')
' enter',13,' attribute number

' 2 product ion-consb rained (ao)' /
' 3 product io rrconstrained (aod ) '/
' 4 attract ion-const rained (bd )'/
' 5 attract ion-co nstraj.ned (bod ) '/t 6 doubly co nstrained (abod ) ' )(' specify origins: '/
' 1 take fron input origins'/
' 2 a4greg,ate froo observed trips

(' specify destinations:'/
' 1 take f roo i,npui destinat ions'/
' 2 a"ggregate from observed trips
' attribute selection?')

)

(s)')

,000
5000
501 0

*
*
*
*
*

6020 format
*
*

60J0 format
+
*

5040 format
5050 format
6050 forrcat
6070 fornat

end

(choices)')

(choices)')
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subroutine init (nt , no , nd, nt , na )

initializlng origins, deot inationo,
ancl balanclng factors

conoon e(10),b(r0), o(lO),d(10),
*oo ( r0), do (lo), to (fr ,1o)

do 100 i=1,nt
a(i.) = t.o(i) = oo(i)
Boto (100,102,101),ao

102 o(i) = 0.
do 110 j=1,na
o(:.) = o(i)+to(i,i)

110 continue
goto 1OO

101 o(i.) = t.100 continue
do 200 j=1,na
b( j) = 1.
d(j) = oo(j)
goto (200 ,2O2,20j) ,nd

2o2 d(J) = 0.
do 210 i=l,nt
a(J) = a(j)+to(i,j)

210 continue
goto 200

20, d(j) = t.
200 cont inue

if (nt.ne.6) return
so =0.
do JoO j.=1 ,nt
so = §o+o (i )

]00 cont lnue
sd = O.
do 400 i=1,na
sd = sd+d(j)

400 cont inue
cf = sd/so
cfp - (cf-1.)*t00.
lf (abs ( cfp) . 1t .1 . ) return
do 500 i=1 , nt
o(i) = o(i)*cf

500 contlnue
write (6,6060) cfp
return

606O fornat (' warning: origl.ns adjusted by',f8.1
end

, ' percent'/ )
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subrouti.ne ecal(e.6, trc, trt, nt, na,nxrnv rbf )

e executi.on of the calibration
dlnension nv(8) , bf(8) ,bt (B)

real€ bt
c

cira ract e r*1 ma , no
c

data no /,n,/
c

10 ob = 0
---Aey - v
lDQ=0
rf (nc.eq.0) goto 11
s rite ( 6 ,6000 )
read (5,50o0) oaj.f (na.ne.no) goto 12

11 write (6,5010) -nx
read (5,*) (bt(k),k=1,ox)

12 rrlte (5,6020)
read (5,*) ns
ßq = ßs+2

2O call n1lo1 (nb, &q, nr., nt , nt , na, nx, nv, bt )if (nb. eq.1 ) goto tO
call beta( 6, mt , mx, mv, bf, bt )
if (nq. eq.4) goto 50
rd rite (5,6OjO\
read (5,*) mp
goto (10,20,J0,40,50),mp

JO call trip(nr, nt, ra,ox,mv,bt )if (nt.gt.1 ) call rast(O,nr,at,nt,na)
cal.l nean (6 , nt , na, ruK, nv , bf )
call stat(6,nt,r,a)
Boto 50

40oq=4
goto 20

5O rnrite (5,5040)
read (5,*) nq
goto (10 ,2O,1O,20,60) , mq

60 write (6,5050)
read (5,5000) na
if (na. eq. no) return
call beta(7,mt,nx,nv,bf , bt )call trip(nr, nt, na,rox,mv,bt )
if (ot . St .1 ) call rast (0, nr,rot , nt, r.a)
call nean(7 ,nt,ro,,ox,ov,bf )
call stat (7, nt, r:a)
call ttab(9,nt,na)
return

5000 fornat (a1 )
6000 forroat (' continue with present beta(s):')
6O'1 O format (' enter start vector beta:',iJ,, number(s)t)
6O20 foroat (' select one:,fit I 1 stop after interneediate steps,/* I 2 cont inue unt1l final solution')
6OJ0 format (' seleet one:'/* ' '1 new start vector beta,f* t 2 repeat v ith p resent Ueta(s ),/+ ' J stat ist ics'/* | 4 continue until final solution,/* I 5 exit')
6040 foraat (, säteLt-änä,'/* | 1 nevr start vector beta,/+ ' 2 repeat with present balancing factor(s )'/* I J stat ist ics'/'F ' 4 cont inue unt i1 f inal solution'/* I 5 exit')
6050 fornat (' output?' )

end
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c

c

c

subroutine nkol(nb,nq,nr,mt,nt,narnx, mv,bt )

naxinizing the loglikelihood
of the nultinooial logit nodel
either with gradient search
or newton-raphson iteration

cotrmon a(lo),b(ro), o(ro),d(lo),
*oo( ro), do (Jo), to (ro,JO),x( 3o,1o,B),*P(lo,lo)

dinension nv (8),bt (8),e(8), h(8,8)

real*8 p, bt , B, h, eps

character*4 beta

data beta, eps,nlt l'beta".oo005r200/
i+ - nil = ö <,-tw= o
cn = 9999.

20 lt = 1t+1
if (mq.ne.4.or.at.1t.4) goto 10
call irip(nr, nt, na,[lxrlov,bt )
call raet ( 0, nr ,0t , nt , na )10 goto (12,11,11,12,t2,11 ),mt

1 1 eaIl probl ( nt , na, mx, nv, bt )
cali dervl (nt 'na,mx,mvrgrh)goto 11

12 öa11 prob2(nt, r,a,Bx,nv,bt )
call r1erv2( nt, na,nx,nv, ß, h)

1, if (mn. eq.0) call grad (o*, g, h)
if (mn.gt.0) call newt(rax,g,h)
ca=cnj.f (mn.ne.'l ) nn = 2
cn = 0.
do 100 k=l ,rox
cn = cn+dats(e(t))

1 00 cont inue
if (cn.El.ca*2.) nn = mn-1j.f ( en. eq.0 ) got o 10
do 200 k=1 ,rox
bt(k) = tt(k)-e(k)
rf (dabs(bt(k)).et.1oc.) goto 95

200 cont inue
if (it.eq.1) write (5,6ooo) (beta,nv(t<),k='! ,nx)
write (6;6010) it,nr, cn, (bt(k),k='l,mx)
j.f (it.eq.nit) goto 99
if (nr.g-t.1 .or.cn.gt.eps+nx) Soto 20
urite (5,6020) it
wri.te (6,6C10)
return

95 write (6,6040)
nb=1
return

99 write (5 ,6020 ) n j.t
write (b,5Or0)
re tu rn

5000 format
5'0 1O format
6O20 fornat
5OJ0 format
5040 fornat
6050 fornat

end

' it ras change',8(2x,a4,L2))
' 

" 
L3, j.4 ,9f8 .4 )

' gradient search terninated at j.terat ion' , 14

' parareeter changes less than specified liolt
' bad start vector: try other beta(s)')
' maximum nurcber of 1tärations exceeded')

)r)
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c
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subrout ine prob l ( nt , na, trx , trv, bt )

caleulating choiee probabillties
guoeing up to one over each ror
conmon a(lO), b(lO), o()O), d(lO),too (JO), do (]0), to (J0,1O),x(lO,l0,B)*p(ro,lo)

dioens io n mv (8) , bt (B)

real*8 prbt,xv,:or

do 100 i=1 ,nt
do 100 j=1 ,na
xw=0.
do 1 lO k=1 ,Bx
xr, = xw+bt(t)*x(i, j,mv(k))

110 continue
bd - b(i)*d(i)
p(i,j) = bd*dexp(xv)

100 cont inue
do 200 i=1,nt
xv.0.
do 210 j =] , na
xv = xv+p(i,..i )

21 O cont inu e
d,o 220 j =1 , na
P(i.';) = P(i,i)/xv

220 cont inue
200 cont inue

retu rn
end

subroutine dervl ( nt, narnxrnv, g, h)

calculating the gradient vector
and the hessian natrix for probl

conoon a(10), b(10), o(lo), d (10),
*oo (10), do (lo),to(ja,3o),x(le,10,8),*p(lo,lo)

di.mension ov (B),e(B),h(B,B),sto()0),xn(B),xs(g,g)

reai*8 prgrh,xtorxs

do 100 k=1 ,mx
g(k) = o.
do 100 i=1 ,Bx
n(k,1) = U.

100 continue
do 200 i=1 , nt
sto(i) = 0.
do 20C j=1,na
sto(i) = sto(i)+to(r,3)

200 cont inue
r1 c 100 i=1 , r,t
do Jl0 k=1 ,nx
xm(k) = 6.
oo.l'1 1.1=1 ,mxxs(k,1, = C.

31 1 cont i. nu e
no 312 j=1,flä
B (k ) . = g r k ) +t o ( i , J , + x ( i , j , nv (k ) )xn(k) = xm(k)'p(i,; )*x(i, J,mv(k))do 31 2 l-=1 ,nx(k, 1) = xs (k, 1)*p ( t, j )*x (t, j,rav (k ) )*x (:., ;, mv (1 ) )

J1 2 cont inue
r (k ) = B (k )-sto (i )*xro (r )

J'! 0 cont inue
do 320 k=1,ox
do J2C l- =1 , nx
h(k, 1) = ir(t<,1)-sto(i )*(xs(t,1)-xm(k)*xn(1))

J2O cont inue
l0O cont inue

retu rn
end

c

c
c



c
c
c
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subroutine prob2(nt, rs,, r[x, !0v, bt )

calcuLat lng choice probabilltles
suontnß up to one over all rors

connon a(fr),b(rO), o(rO), d(lO),
*oo (lo), do (lo), to (ro,r0),x(1o,3o,8),
*p(lo,ro)

dinenslon nv(e) ,ut (a)

real*8 p,bt,xvrxr

do 100 i=1 , nt
do 100 j=1 ,na
xw = 0.
do ,l 10 k=l ,nx
xw = xw+bt (t)*x(1, i,nv(k))

110 continue
abod = a(i. )*r( j )*o(i)*d(j )
r(i,;) = abod*dexp(xw)

100 cont lnue
Xv=0.
do 2O0 i=1 , nt
do 2OO j=1,na
xv = xyrrp(ir;1

200 cont inue
do JOO i=l , nt
do JOO j=1 ,na.
n(i,;; = P(i,i)/xv

JOO cont inue
return
end

subroutine derv2( nt, na, nx, nv, g, h)

calculati.ng the gradient vector
and the hessian matri.x for prob2

cornrnon a(lo),b(lo), o(lo), d(ro),
*oo (lo ) , ao ( lo ) , to ( 50 ,jo) ,x(jo ,5o ,a) ,*p(lo,lo)

dioens ion nv (B) , C(8) , h(B,B) , xm (8) , xs (8,8)

realrB pr g, hrxxo, xB

do 100 k=1 ,mxxn(t) = o.
8(k) = o'
do 100 1=l,mx
xs(k,1) = o.
h(k, 1) = o.

100 cont i. nue
at^ - AD UU - J.

do 200 i='1 , nt
do 200 j=1 ,na
sto = sto+to(i,;)
do 200 k-l ,mx
xm(t) = xtr(k)+p(i, j)*x(i, j,mv(t))
do 200 1=1 ,nx
xe (k, 1) = xs (t, t )+p (i, j )*x (i, ;,rnv(t ) )*x (:., j,mv(t ) )

200 cont inue
do 100 i=1 , nt
do IOO j =l , r,ado JOO k=1 ,mx
g(k) = g(k)+to(t, j )*x(t, j,uv(t))

300 continue
do 400 k=1 ,mx
€(k) = g(k)-sto*xn(k)
do 400 l='1 ,mx
h(k,1) = h(k,1)-sto*(xs(k, 1)-xm(r)*xn(1))

400 continue
retu rn
end

§

c



c
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subroutine grad (nx, g, h)

gradi.ent eeareh nethod:
search aJ.ong th6 Bteepest aacent

dtmens ion s(8) , h(B,g)

real*8 g, h, g§g., hsq,xv,qt

8s{ = 0.
rio 100 k='1 ,lox

. gsq = gsq+g (t )*e(t )
100 continue

hsq = 9.
do 200 k=1 ,rcxxv=0.
do 210 1=1,mx

= xv+h(k,1)*g(1)
210 continue

hsq - hsq+g(k)*xv
200 continue

hsq = dabs(hsq)
qt = gsq/hsq
do lO0 k=1 ,mx
e(k) = -qt*e(k)

JOO cont i.nue
retu rn
end

subroutine newt (mx, g, h)

ne'rton-raphson nethod :
solving nx linear equations
using the gauss-jordan oethod

dioens i.on g (B) , h(B,B)

ieai*8 g,h,t

do 100 k=i,nx
kl = k+]

,.'t=(l' 
eq'ex) goto 101

do 110 j=k1 ,ax
i. f (dabs (h ( j ,k ) ) . €t . dabs (ir (r,t ) ) )'! 10 cont inu e
lf (l,.eq.k) goto 1Ol

,10=',f?oj:\,o*
nr, ^-t,"1'lr, 

u', -.,.*r.,)
i:(1,;) = t

1 20 cont inuet = e(t)
erk; = s(1)e(r) = t1A1 ii (h(k,k).eq.0.) h(k,k) = 1.e-10
c (l{ ) = e(t<;tir (x,t )1f (X.eq.nx) gcto 10C
1o 1JJ j=k1,mx

__^ n(k,i,, = 3tk,J)/h(k,k)
l )u cont Lnue

f,o +9 L=Klriox
io t41 j=kl,mx
h(:,; ) = h(i,JJ-h(i,k)*h(k,J)
cont i nu e

s(1 ) = s(i)-h(i,k)*5(k)
cont lnue
eont inue
if (nx.eq.1) return
do 200 j=2,nx
1. - -.., t l[ .- L]1fZ-
kl = k-1
do 200 i=1 ,k1
rli - .'r ) h r '. \+-/r- \b\L ) ' e\-,/-ii\r'1,l/^5\l<l
cont 1n',.ie
fetui'r:
end

c

141

140
100
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subroutine beta(nf ,rnt,Erx,Ev,bf ,bt )

output of beta vector

dlnenslon nv(8),!t (8),bf (8)

real*8 bt

if (nt.eq.1) write (nf,9000)
i.f (nt. eS.2 ) write (nf ,9010)
if (nt.eS.l) nrite (nf,9020)
i.f (nt. eq.+ ) write (nf ,9070)
if (nt. eS.5) write (nf,9040)
if (nt. eS.6) nrite (nf ,9050)
do 100 k=1 ,oxwrlte (nf ,5o00) nv(k),bf (nv(k)),bt (k)

lOO cont inue
r€turn

6000
9mo
90l 0
9020
9ArO
9040
9050

fornat (' beta',i2,' (',1pe6.0,')',9(' .'),0pft0.4)
fornat (/' unconstrained model (cod ): '/ )
foroat (/' productiopconetralned nodel (ao):'/ ).
fornat (/' production-constrained model (aod):'/ )
foroat (/ ' ättract i.on-'conetrained model (ta ) : '/ )
foroat (/ ' att ract ion-const rained nod.e 1 (toa ) : '/ )
foroat (/ ' doubly co rstrained oode 1 (abod ) : '/ )
end

c

subroutine trip(nr,
generation of trip

nt , na, mx, mv, bt )

table (choice natr j.x )

connon a(ro),b(ro), o(10), d(lo),
*oo(]0), do (10),to(')o,Jo),x (5o,10,8),
*p(ro,r0) ,t(1o,1o)
dinens i.on rov (8) , bt (8)

real *8 p, bt

nr = 0
st = 0.
an-A

sd = 0.
do t0O i=i ,nt
so = so+o(i)
sd = sd+d(i)
do 100 j=1,na
xr* = 0.
do 110 k-1,mx
xr, = xw+bt (t)*x(i, ;,mv(k))

1 'l O cont inue
t(i, j ) = a(i )+b ( j )*o(i )*d(j )*exp(xw )

st = st+t(i,j)
1 OO eont inue

st o = aoaxl ( so, sd )
cf = sto/st
do 200 l=1,nt
do 2OO j=1 

'na:(r,J) = t(i, j)*cf
200 continue

retu rn
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c

subroutine rast (mr, nr,mt, rJ, na)

biproportional (uniproportio ral ). ad justoent
of the trip table (choice nratrix) using the
ras-technique and calculatj.on of balancing
factors

eo&Eon a(10),b(r0), o(fo), d(10),
*oo(Jo), do(lo), to(ro,3O),x(Jo,Jo,8),*p(lo,]0),t(1o,1o)

dimensio r. so (10), gd (10)

real*B p

data eps ,nit / 0.0001,200/

do 1OO it=1 ,nit
Se = O.
if (nt.eq.4.or.ut.eq.5) goto 101
do 200 j.=l , nt
so(i) = 0.
do 21O j=1 ,na
if (t(i,J).It.0.0001 ) r(l,j) = o.0o0t
so(i) = so(i)+t(i',i)

21 O eont inue
se = se+abs(o(i)-so(t))
so(i) = o(i)/so(r)
a(i) = a(i)*so(l)

200 cont inue
do J00 i=l , nt
do 100 i ='l , na
t(i,j) = t(i,J)*scri)

J00 cont inue
if (mt . 1t .4 ) goto 10

1 O'1 sod = 0.
do 400 i=1 'nasod = soC+a(;)
sd(j) = 9.
do 4'1 0 i=l ,nt
if (t(i,i).eq..0')t(i,;; = 0.0001
sd(;) = sd(j)+t(i, j)

410 continue
se = se+abs(d(.: )-so (j))
sd(j) = a(;)/sa(j)
b(t) = t(j)*sd(j)

4OO cont inue
do 5OO i=1 'nado 5OO 1=1 , nt
+l: i\ - +i/j .i\*-A/i)u\rrJl - u\IrJl -u\J/

5O0 cont inue
if (E't . eq.4 . or.mi . eq.5 ) goto 10
if (se.lt. €ps*it*sod) goto 10

1 O0 cont inue
it - nit

1O if (mr.st.0) write (5,6000) it
nr = it
return

5OCO fornat (' no. of iterations in ras:', i4)
end
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c

eubroutine st at (nf, nt , na)

goodnees-of-f it st at ist ics

codunon a(J0),b(10), o(r0), d(
*oo ( Jo), do (lo), to ( Jo,Jo), xx (
*p ( 10 ,10 ) , t(10 ,5O)

real*8 p

10) ,
n,ro,8)

gx = 0.
sX = 0'
§xf = Q'
sxx = O.
SJIY = O'
S&x = O.
r1x = 0.
rly - 0.
af = 0.
nb = nt*na
do 100 i=.1 ,nt
do 100 j=1,na
x = to(i,J)
if (x:e9.Q.) x = 0.0001
y = t(1'i)
if (Y.eq.0.)Y = 0.0001
8X = SX+X
sy = sy+y
SJ(Y = gxy+x r5'
sxx = sxx+x*x
syy = syy+y rT
sax = Sa:<+abS (x)
rlx = rlx+x*alog(x)
rlY = rIY+x*a,og(Y )
af = af+abs(x-y)

100 continue
xo = sx/ nb
ym = sy/nb
vX$ = ( sxy-xn*sy )/ (nU-t )
vx = (sxx-xtr*sx)/ (nb-t )

vy = (syy-ym*sy)/ (nb-t )
11 = rIy/rlx
af = af /s ax*'l OO.
rc = vxy/w
cn = xrD-rc*ym
cc = vxy/sqrt (vx*vy)
rr = cc*cc
tt = cc*sqrt (nb-2. )/sqrt (t .-rr )
Lrite (nf,6000) r1, rc, cyr , cc, rr , tt , af
re tu rn

5OO0 foroat (/'
*l

*r

*t

*r
*r
*r
Ir
end

statistics:'/
loglikelihood ratio . .' ,f10.4/
s lope . ' ,f1O .4/
intärcept . .' ,f1 O.2 I
correlaiion coefficient r. . .',f1A.4/
r-squared .' ,f1o.4l
t of r-squared ,' ,f1O.2/,
mean abs6lute percrentage error .' ,f1O.2f
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subroutlne Bean(nf , nt, na,trxrovrbf )

cooparlson of obeerved and
predlcted totals and means

corrnon a(Jo), b(lo), o(ro), d (ro),
*oo ( Jo), do ( lo), to (ro,Jo),x (to,1o,8)
*p(JO,l0),1(1O,1O)

dlaens 1o rr nv (8 ) , bf (g) , sx (8) , sy (8)

real*8 p

gto = 0.
st=0.
r,b . ntrna
do 1OO i=1,nt
do 100 i=1 ,na
sto = sto+to(i,i)
st = st+t(i,i)

100 cont inue
do 200 k=1 rnx
sx(k) = o.
sy(k) = 0.
do 210 i='1 , nt
do 210 j-1 ,na
sx(t) = sx(t)+to(i
sy(k) = sy(t)*t(i,

21 O cont inue

, i )*x (i , ; , mv (k ) )j)*x(i,;,mv(k))
sx (k ) = sx (x )/ (sto*bf (mv (k ) ) )
ey(k) = sy(k )/ (st*br(mv(t)) )

200 continue
isto = sto+O.5
ist = st+0.5
§to = sto/nb
st = et/nb
write (nf ,6000) nb, r,b, isto, ist,eto,st
do l0O k=1 ,mxwrite (nf,5OtO) mv(k),sx(t),sY(t)

IOO eont inue
return

6000 foroat (/'
*r
*r
*r

5010 fornat ( I

end

totals and aeans: ' ,8x, 'observed predicted
observat io ns .' ,2 71O/
trips (choices) .',2i1of
trlps/observation . .' ,2f10.2)
mean of attribute',ü,' . .t,2f10.1)

subrouti ne ttab (nf, nt , re)

output of trip table (choice matrix)

connon a( l0) , b (lO) ,*oo(lo),do(lo),to(Jo
*p(1o,1a) , t(lo,lo)

dinens ion it (10)

real*8 p

nk = (na-1 )/10+t
do .l OO jl4 =1 l nk
ja = (ik-t)*19*,
je = mi nO( ja+9 , na )
do 100 1=1,nt
do 110 j=ja,je
ir(j) = t(i, j)+0.5

1 1O continue
write (nf,9OOO) ik,

100 cont inue
return

9@o fornat ('t ' , i1 , i4
end

o (10) , d (lo) ,
,rul,x\)4,)Q,ö),

1,(j.t(1),j=ja,je)

,2x,10i5)
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