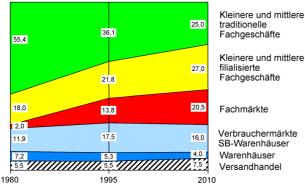


Lehrveranstaltung "Modelle in der Raumplanung" Sommer 2009

Standorte des Einzelhandels: Akteure

3


Trends im Einzelhandel

Trends im Einzelhandel (1):

- Steigende Einkommen, kürzere Arbeitszeiten, weiter wachsende Motorisierung und bessere Lagermöglichkeiten in der Wohnung führen zu:
 - weniger Einkaufsfahrten
 - längeren Einkaufsfahrten
 - mehr Einkäufen je Fahrt
 - größeren Einzelhandelsbetrieben
 - Ende der "Tante-Emma-Läden"
- 2. Größere Einzelhandelsbetriebe
 - bevorzugen dezentrale Standorte
 - verbrauchen mehr Fläche je Beschäftigten (Lager, Selbstbedienung, Parken)

5

Trends im Einzelhandel (Marktanteile in %)

Trends

Standorte des Einzelhandels: Akteure

Haushalte: Einkommen / Geld- und Zeitbudgets

Standortentscheidungen Wege- und Zielentscheidungen

Kaufentscheidungen

Einzelhandel: Einkaufspreise

Löhne und Gehälter / Gemeinkosten

Standortentscheidung

Sortiment und Preise / Werbung

Gebiets- Daseinsvorsorge / Wirtschaftsförderung körperschaft: Bauleit-, Verkehrs- und Umweltplanung

Projekt- Bodenpreise / Erschließungskosten

entwickler: Nutzungsbeschränkungen

Umweltschutzauflagen

4

Trends im Einzelhandel

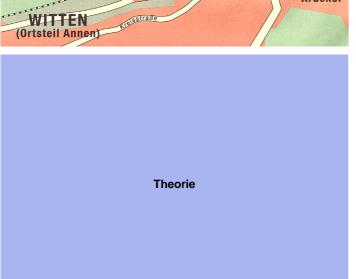
Trends im Einzelhandel (2):

- 3. "Teleshopping" führt zu
 - weniger Einkaufsfahrten
 - noch größeren Läden/Auslieferungslagern
 - mehr Lieferverkehr
- 4. Hohe Bodenpreise im Stadtzentrum
 - vertreiben Fachgeschäfte
 - "Luxus" oder "schneller Umsatz"
- 5. Gegentrend:
 - Sozialfunktion des Einkaufens
 - Erlebnisfunktion des Einkaufens

6

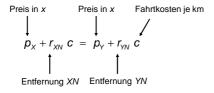
Einzelhandelskonzept "Östliches Ruhrgebiet"

Das "Regionale Einzelhandelskonzept für das Östliche Ruhrgebiet und angrenzende Bereiche" wurde im Jahre 2000 im Auftrag von 21 Gemeinden im östlichen Ruhrgebiet erstellt (Lehnerdt u.a., 2000; Lehnerdt, 2007).


Generelle Empfehlungen:

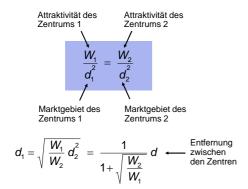
- (1) vorhandene Zentren stärken
- (2) restriktive Handhabung nichtintegrierter Standorte

Sortimentspezifische Empfehlungen:


- Nahrungs- und Genussmittel: so dezentral wie möglich
- Bekleidung, Schuhe, Spielwaren, Unterhaltungselektronik, Bücher usw.: nur in Zentren oder Nebenzentren
- Bau- und Gartenzentren: nur Eigenbedarf der Gemeinde
- Möbel- und Einrichtungshäuser: Bedarf der Gesamtregion

Marktgebiete (Richardson, 1978)

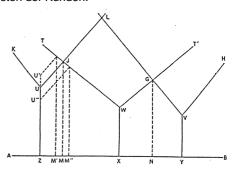
Rechte Seite des Diagramms (vorige Folie): Für den Grenzpunkt N zwischen zwei **Marktgebieten** gilt (siehe Hotelling):



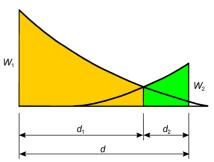
Linke Seite des Diagramms (vorige Folie): Auswirkungen von **Preiserhöhungen** (U^*) und **Preissenkungen** (U^{**}) auf die Größe des Marktgebiets von Z.

13

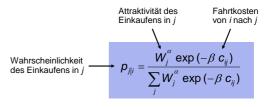
"The Law of Retail Gravitation" (Reilly, 1931)


Formulierung nach Converse (1949):

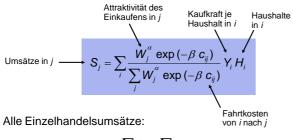
Marktgebiete (Richardson, 1978)


Grenze zwischen Marktgebieten als Funktion von Preis und Fahrtkosten der Kunden:

12


"The Law of Retail Gravitation" (Reilly, 1931)

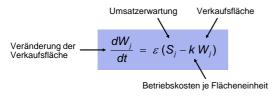
Die Größe der *Marktgebiete* konkurrierender Einkaufszentren ist eine Funktion ihrer *Attraktivität* und der *Entfernung* zwischen ihnen.


14

Umsatzprognose (Huff, 1963; Lakshmanan/Hansen, 1965) *Wahrscheinlichkeit* des Einkaufens in *j*:

Der Exponent α > 1 drückt die **überproportional** zu ihrer Größe steigende Attraktivität großer Einkaufszentren aus.

Umsatzprognose (Huff, 1963; Lakshmanan/Hansen, 1965) *Einzelhandelsumsätze* in *j*:



$$\sum_{i} S_{j} = \sum_{i} Y_{i} H_{i}$$

17

Standorte des Einzelhandels (Harris und Wilson, 1978)

Die Entwicklung des Angebots an Einzelhandelsflächen ist eine Funktion der Differenz zwischen *Flächennachfrage* und *Flächenangebot*:

Die Einzelhändler erweitern ihre Verkaufsfläche W_j , solange die Umsätze S_i größer sind als die Betriebskosten kW_i .

Fortsetzung →

19

Zentralitätskennziffer (GfK, 2003)

Kaufkraftkennziffer je Einwohner:

Kaufkraft je Einwohner in
$$i$$
 Kaufkraft je Einwohner BRD
$$\bigvee_{\pmb{K}_i^*} = \pmb{K}_i / \overline{\pmb{K}} \cdot 100$$

Umsatzkennziffer je Einwohner:

Umsatz je Einwohner in
$$i$$
 Umsatz je Einwohner BRD $S_i^* = S_i / \overline{S} \cdot 100$

Fortsetzung →

21

Zentralitätskennziffer (GfK, 1997)

Zentralitätskennziffern (Beispiele)

Gemeinde	Umsatz- kennziffer	Kaufkraft- kennziffer	Zentralitäts- kennziffer
Kamen	121,7	95,8	127,1
Bochum	122,1	104,3	117,1
Dortmund	115,5	101,2	114,1
Hagen	118,1	103,6	114,0
Witten	112,5	101,0	111,4
Schwerte	110,9	102,7	108,0
Hamm	95,7	92,0	104,0
Werl	90,1	88,4	101,9
Herdecke	60,6	111,8	54,2
Fröndenberg	46,7	99,2	47,1

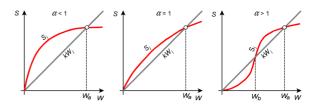
Standorte des Einzelhandels (Harris und Wilson, 1978)

Einzelhandelsumsätze in j (siehe vorige Folie):

$$S_{j} = \sum_{i} \frac{W_{j}^{\alpha} \exp(-\beta c_{ij})}{\sum_{i} W_{j}^{\alpha} \exp(-\beta c_{ij})} Y_{i} H_{i}$$

Die Attraktivität W_j einer Einzelhandelseinrichtung wird im folgenden als ihre **Verkaufsfläche** quantifiziert – andere Einheiten, z.B. Beschäftigte, wären auch möglich.

Angebot und **Nachfrag**e an Einzelhandelsflächen sind im **Gleichgewicht**, wenn der Umsatz je Flächeneinheit W_j den Betriebskosten k je Flächeneinheit entspricht:

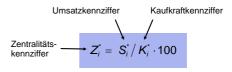

$$S_i = k W_i$$

Fortsetzung →

18

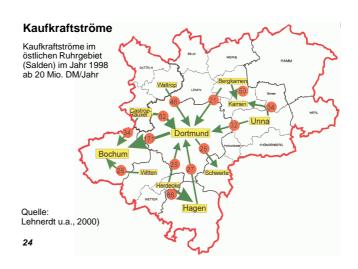
Standorte des Einzelhandels (Harris und Wilson, 1978)

Der Verlauf der Umsatzsteigerung ist abhängig vom Wert des Exponenten α .



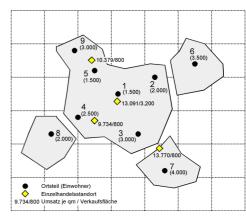
Die Punkte W_a sind **stabile Gleichgewichtspunkte**, Punkt W_b ist **instabil**.

20


Zentralitätskennziffer (GfK, 2003)

Zentralitätskennziffer (siehe vorige Folie):

Die Zentralitätskennziffer gibt die *Attraktivität* des Einzelhandels einer Gemeinde an, d.h. den Grad (in Prozent), in dem er die *Kaufkraft* ihrer Einwohner an sich bindet.


Eine Zentralitätskennziffer größer als 100 bedeutet einen *Kaufkraftzufluss*, eine Zentralitätskennziffer unter 100 einen *Kaufkraftabfluss*.

Modellbeispiel 1: Einzelhandelsstandorte

Einzelhandelsstandorte (Huff-Modell)

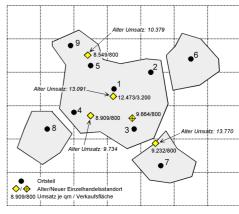
Vorhanden: 4 Standorte (800-3.200 qm)

26

Einzelhandelsstandorte (Huff-Modell)

Vorhanden: 4 Standorte (800-3.200 gm) Neu: 1 Standort (800 qm) $\alpha = 1.2$ $\beta = 0.6$ Der Standort mit

der höchsten Umsatzerwartung liegt zentral. Die Umsätze der übrigen Läden verringern sich.


27

Vorhanden: 4 Standorte (800-3.200 qm) Neu: 1 Standort (800 qm)

Einzelhandelsstandorte (Huff-Modell)

 α = 1.2 $\beta = 0.6$

Der Standort mit der höchsten Umsatzerwartung liegt zentral. Die Umsätze der übrigen Läden verringern sich.

28

Einzelhandelsstandorte (Huff-Modell) Vorhanden: 4 Standorte (800-3.200 qm) Neu: 1 Standort (800 qm) $\alpha = 1.2$ $\beta = 0.6$ Fahrtkosten

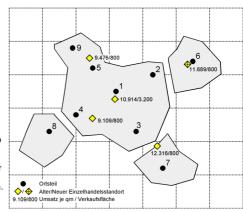
Wären die Fahrtkosten doppelt so hoch wie heute, würden die Ein-zelhändler wieder wohnungsnahe Standorte wählen.

verdoppelt

29

Einzelhandelsstandorte (Huff-Modell)

Vorhanden: 4 Standorte (800-3.200 qm)


Neu: 1 Standort (800 qm)

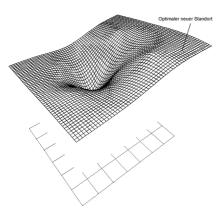
 $\alpha = 1.2$ $\beta = 0.6$

Fahrtkosten verdoppelt

Wären die Fahrtkosten doppelt so hoch wie heute, würden die Ein-zelhändler wieder wohnungsnahe Standorte wählen.

30

Einzelhandelsstandorte (Huff-Modell)


Vorhanden: 4 Standorte (800-3.200 qm)

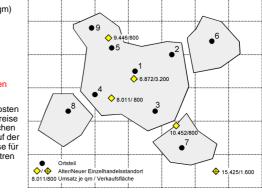
Neu: 1 Standort (800 qm)

 α = 1.2 $\beta = 0.6$

Parkgebühren im Zentrum

Hohe Parkkosten und Bodenpreise der City machen Standorte auf der grünen Wiese für Einkaufszentren attraktiv.

Einzelhandelsstandorte (Huff-Modell)


Vorhanden: 4 Standorte (800-3.200 qm)

Neu: 1 Standort (800 qm)

 α = 1.2 $\beta = 0.6$

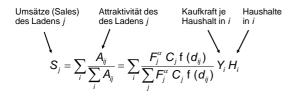
Parkgebühren im Zentrum

Hohe Parkkosten und Bodenpreise der City machen Standorte auf der grünen Wiese für Einkaufszentren attraktiv.

Modellbeispiel 2: Einzelhandel in Hombruch

Einzelhandel in Hombruch (Schürmann, 1999)

Attraktivität des Ladens j vom Wohnstandort i:

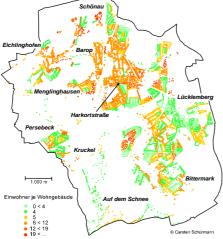

Der Exponent α drückt die überproportionale Attraktivität größerer Läden aus. Der Konzentrationsindex berücksichtigt die Nähe anderer Läden:

$$C_{j} = \frac{\sum_{k} F_{k} f(d_{jk})}{\sum_{i} \sum_{k \neq j} F_{k} f(d_{jk})}$$

35

Einzelhandel in Hombruch (Schürmann, 1999)

Umsatzerwartung des Ladens *j* (vergleiche Folie 18):



Es wird angenommen, dass ein Laden geschlossen wird, wenn er merhr als 30 Prozent seines Umsatzes verliert.

37

39

Einzelhandel in Hombruch (Schürmann, 1999) Wohnstandorte und Bevölkerung

Einzelhandel in Hombruch (Schürmann, 1996)

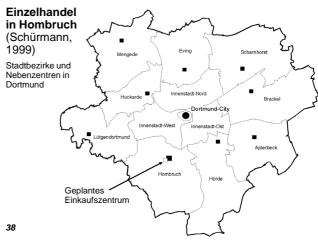
Die Diplomarbeit "Die Versorgungsqualität des Einzelhandels in Dortmund-Hombruch" hatte zum Ziel:

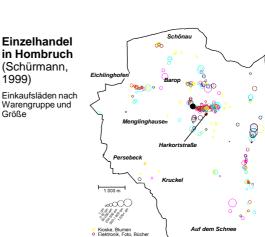
- Messung der kleinräumigen Versorgungsqualität von Einzelhandel und haushaltsbezogenen Dienstleistungen im Dortmunder Stadtteil Hombruch,
- Untersuchung der Veränderung der Versorgungsqualität durch ein neues Einkaufszentrum im Stadtteilzentrum.

Die Untersuchung erfolgte durch Kombination eines **Geoinformationssystems** mit selbst geschriebenen Programmen.

34

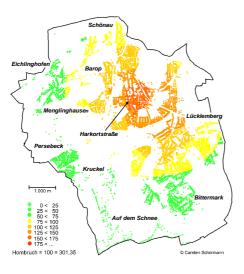
Einzelhandel in Hombruch (Schürmann, 1999)


Einzelhandelsversorgungsqualität:


$$V_i = \sum_i A_{ij}$$

Die Versorgungsqualität kann für eine Verkehrsart oder für alle Verkehrsarten gemeinsam berechnet werden. Dann ist die multimodale Widerstandsfunktion der *logarithmische "Mittelwert"* \overline{d}_{ij} der modalen Widerstandsfunktionen d_{ijm} (siehe vorige Woche Folie 34):

$$\overline{d}_{ij} = -\frac{1}{\lambda} \ln \sum_{m} \exp(-\lambda \ d_{ijm})$$


36

Einzelhandel in Hombruch (Schürmann, 1999) Einzelhandels-

versorgungsqualität

Einzelhandel in Hombruch (Schürmann, 1999)

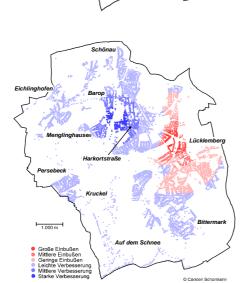
41

Umsatzentwicklung nach Eröffnung des Einkaufszentrums im Stadtteilzentrum

Umsatzgewinne
■ 0->100
Umsatzverluste

< 10 %10-18 %18-25 %25-30 %> 30 %

O Insolvenz


43

Einzelhandel in Hombruch (Schürmann, 1999)

Absolute Veränderung der Einzelhandelsversorgungsqualität für Fußgänger

45

47

Einzelhandel in Hombruch (Schürmann, 1999)

Durch das neue Einkaufszentrum im Stadtteilzentrum erhöht sich die **Verkaufsfläche** im Stadtteil um 8.000 qm.

Durch die Konkurrent des neuen Einkaufszentrums verliert der Stadtteil *kleinere, alteingesessene Geschäfte* mit einer Verkaufsfläche von rund 1.300 qm.

Die Versorgungsqualität mit Einzelhandel im Stadtteil nimmt **absolut** zu. Durch die Zentralisierung der Verkaufsfläche im neuen Einkaufszentrum

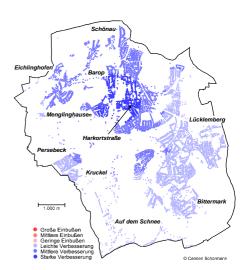
- sinkt die Versorgungsqualität der zentrumsfernen Wohngebiete relativ zum Durchschnitt
- sinkt die Versorgungsqualität der zentrumsfernen Wohngebiete zu Fuß und mit dem Rad.

Einzelhandel in Hombruch (Schürmann, 1999)

Neues Einkaufszentrum im Stadtteilzentrum

Szenarien:

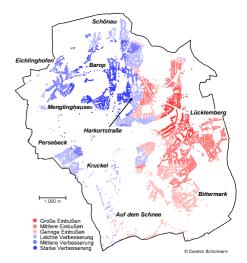
- 1 Konstante Kaufkraft, keine zusätzlichen Kunden
- 2 Konstante Kaufkraft, zusätzliche Kunden
- 3 Steigende Kaufkraft, keine zusätzlichen Kunden
- 4 Steigende Kaufkraft, zusätzliche Kunden


Ergebnisse:

- Umsatzgewinne erzielen Geschäfte in unmittelbarer Nachbarschaft des neuen Einkaufszentrums
- In allen vier Szenarien erleiden ca. 30 Geschäfte Umsatzeinbußen von mehr als 30 Prozent – am östlichen Ende der Harkortstraße, an der südlichen Hagener Straße und in Eichlinghofen.

42

Einzelhandel in Hombruch (Schürmann, 1999)


Absolute Veränderung der Einzelhandelsversorgungsqualität

44

Einzelhandel in Hombruch (Schürmann, 1999)

Relative Veränderung der Einzelhandelsversogungsqualität

46

Weitere Informationen

Schürmann, C. (1996): *Die Versorgungsqualität des Einzelhandels in Dortmund-Hombruch*. Diplomarbeit an der Fakultät Raumplanung (BR).

Schürmann, C. (1999): Schöne heile Einkaufswelt: eine Methode zur Abschätzung der wohnstandörtlichen Versorgungsqualität. Arbeitspapier 167. Dortmund: Institut für Raumplanung, Universität Dortmund. http://www.raumplanung.uni-dortmund.de/irpud/fileadmin/irpud/content/documents/publications/ap167.pdf (BR).

Lehnerdt, J. (2007): Regionales Einzelhandelskonzept für das Östliche Ruhrgebiet und angrenzende Bereiche. Fortschreibung 2007. Köln: BBE Unternehmensberatung GmbH. http://arcims.hamm.de/website/REHK_neu/PDF/LangversFortschREHK0907.pdf.